info prev up next book cdrom email home

Fibonacci Hyperbolic Cosine

Let

\begin{displaymath}
\psi\equiv 1+\phi={\textstyle{1\over 2}}(3+\sqrt{5}\,)\approx 2.618034
\end{displaymath} (1)

where $\phi$ is the Golden Ratio, and
\begin{displaymath}
\alpha=\ln\phi\approx 0.4812118.
\end{displaymath} (2)

Then define
$\displaystyle \mathop{\rm cFh}(x)$ $\textstyle \equiv$ $\displaystyle {\psi^{x+1/2}+\psi^{-(x+1/2)}\over\sqrt{5}}$ (3)
  $\textstyle =$ $\displaystyle {\phi^{(2x+1)}+\phi^{-(2x+1)}\over\sqrt{5}}$ (4)
  $\textstyle =$ $\displaystyle {2\over\sqrt{5}} \cosh[(2x+1)\alpha).$ (5)

This function satisfies
\begin{displaymath}
\mathop{\rm cFh}(-x)=\mathop{\rm cFh}(x-1).
\end{displaymath} (6)

For $n\in\Bbb{Z}$, $\mathop{\rm cFh}(n)=F_{2n+1}$ where $F_n$ is a Fibonacci Number.


References

Trzaska, Z. W. ``On Fibonacci Hyperbolic Trigonometry and Modified Numerical Triangles.'' Fib. Quart. 34, 129-138, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26