info prev up next book cdrom email home

Finite Group D3

\begin{figure}\begin{center}\BoxedEPSF{D3.epsf}\end{center}\end{figure}

The Dihedral Group $D_3$ is one of the two groups of Order 6. It is the non-Abelian group of smallest Order. Examples of $D_3$ include the Point Groups known as $C_{3h}$, $C_{3v}$, $S_3$, $D_3$, the symmetry group of the Equilateral Triangle, and the group of permutation of three objects. Its elements $A_i$ satisfy ${A_i}^3=1$, and four of its elements satisfy ${A_i}^2=1$, where 1 is the Identity Element. The Cycle Graph is shown above, and the Multiplication Table is given below.

$D_3$ 1 $A$ $B$ $C$ $D$ $E$
1 1 $A$ $B$ $C$ $D$ $E$
$A$ $A$ 1 $D$ $E$ $B$ $C$
$B$ $B$ $E$ 1 $D$ $C$ $A$
$C$ $C$ $D$ $E$ 1 $A$ $B$
$D$ $D$ $C$ $A$ $B$ $E$ 1
$E$ $E$ $B$ $C$ $A$ 1 $D$

The Conjugacy Classes are $\{1\}$, $\{A, B, C\}$

$\displaystyle A^{-1}AA$ $\textstyle =$ $\displaystyle A$ (1)
$\displaystyle B^{-1}AB$ $\textstyle =$ $\displaystyle C$ (2)
$\displaystyle C^{-1}AC$ $\textstyle =$ $\displaystyle B$ (3)
$\displaystyle D^{-1}AD$ $\textstyle =$ $\displaystyle C$ (4)
$\displaystyle E^{-1}AE$ $\textstyle =$ $\displaystyle B,$ (5)

and $\{D$, $E\}$,
$\displaystyle DA^{-1}D$ $\textstyle =$ $\displaystyle E$ (6)
$\displaystyle B^{-1}DB$ $\textstyle =$ $\displaystyle D.$ (7)


A reducible 2-D representation using Real Matrices can be found by performing the spatial rotations corresponding to the symmetry elements of $C_{3v}$. Take the z-Axis along the $C_3$ axis.

$\displaystyle I$ $\textstyle =$ $\displaystyle R_z(0) = \left[\begin{array}{cc}1 & 0 \\  0 & 1\end{array}\right]$ (8)
$\displaystyle A$ $\textstyle =$ $\displaystyle R_z({\textstyle{2\over 3}}\pi)
= \left[\begin{array}{cc}\cos({\te...
...({\textstyle{2\over 3}}\pi) & \cos({\textstyle{2\over 3}}\pi)\end{array}\right]$  
  $\textstyle =$ $\displaystyle \left[\begin{array}{cc}-{\textstyle{1\over 2}}& -{\textstyle{1\ov...
...}\\  {\textstyle{1\over 2}}\sqrt{3} & -{\textstyle{1\over 2}}\end{array}\right]$ (9)
$\displaystyle B$ $\textstyle =$ $\displaystyle R_z({\textstyle{4\over 3}}\pi) = \left[\begin{array}{cc}-{\textst...
...\\  -{\textstyle{1\over 2}}\sqrt{3} & -{\textstyle{1\over 2}}\end{array}\right]$ (10)
$\displaystyle C$ $\textstyle =$ $\displaystyle R_C(\pi) = \left[\begin{array}{cc}-1 & 0 \\  0 & 1\end{array}\right]$ (11)
$\displaystyle D$ $\textstyle =$ $\displaystyle R_D(\pi) = CB = \left[\begin{array}{cc}{\textstyle{1\over 2}}& -{...
...\\  -{\textstyle{1\over 2}}\sqrt{3} & -{\textstyle{1\over 2}}\end{array}\right]$ (12)
$\displaystyle E$ $\textstyle =$ $\displaystyle R_E(\pi) = CA = \left[\begin{array}{cc}{\textstyle{1\over 2}}& {\...
...\\  {\textstyle{1\over 2}}\sqrt{3} & -{\textstyle{1\over 2}}\end{array}\right].$ (13)


To find the irreducible representation, note that there are three Conjugacy Classes. Rule 5 requires that there be three irreducible representations satisfying

\begin{displaymath}
h={l_1}^2+{l_2}^2+{l_3}^2 = 6,
\end{displaymath} (14)

so it must be true that
\begin{displaymath}
l_1 = l_2 = 1, l_3 = 2.
\end{displaymath} (15)

By rule 6, we can let the first representation have all 1s.

${\mathcal D}_3$ 1 $A$ $B$ $C$ $D$ $E$
$\Gamma_1$ 1 1 1 1 1 1


To find a representation orthogonal to the totally symmetric representation, we must have three $+1$ and three $-1$ Characters. We can also add the constraint that the components of the Identity Element 1 be positive. The three Conjugacy Classes have 1, 2, and 3 elements. Since we need a total of three $+1$s and we have required that a $+1$ occur for the Conjugacy Class of Order 1, the remaining +1s must be used for the elements of the Conjugacy Class of Order 2, i.e., $A$ and $B$.

$D_3$ 1 $A$ $B$ $C$ $D$ $E$
$\Gamma_1$ 1 1 1 1 1 1
$\Gamma_2$ 1 1 1 $-1$ $-1$ $-1$

Using Group rule 1, we see that

\begin{displaymath}
1^2+1^2+{\chi_3}^2(1) = 6,
\end{displaymath} (16)

so the final representation for 1 has Character 2. Orthogonality with the first two representations (rule 3) then yields the following constraints:


$\displaystyle 1 \cdot 1 \cdot 2+1 \cdot 2 \cdot \chi_2+1 \cdot 3 \cdot \chi_3 = 2+2\chi_2+3\chi_3$ $\textstyle =$ $\displaystyle 0$ (17)
$\displaystyle 1 \cdot 1 \cdot 2+1 \cdot 2 \cdot \chi_2+(-1) \cdot 3 \cdot \chi_3 = 2+2\chi_2-3\chi_3$ $\textstyle =$ $\displaystyle 0.$ (18)

Solving these simultaneous equations by adding and subtracting (18) from (17), we obtain $\chi_2=-1$, $\chi_3=0$. The full Character Table is then

$D_3$ 1 $A$ $B$ $C$ $D$ $E$
$\Gamma_1$ 1 1 1 1 1 1
$\Gamma_2$ 1 1 1 $-1$ $-1$ $-1$
$\Gamma_3$ 2 $-1$ $-1$ 0 0 0

Since there are only three Conjugacy Classes, this table is conventionally written simply as

$D_3$ 1 $A=B$ $C=D=E$
$\Gamma_1$ 1 1 1
$\Gamma_2$ 1 1 $-1$
$\Gamma_3$ 2 $-1$ 0


Writing the irreducible representations in matrix form then yields

$\displaystyle 1$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}1 & 0 & 0 & 0 \\  0 & 1 & 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & 1\end{array}\right]$ (19)
$\displaystyle A$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}-{\textstyle{1\over 2}}& -{\textstyle{1\...
...extstyle{1\over 2}}& 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & 1\end{array}\right]$ (20)
$\displaystyle B$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}-{\textstyle{1\over 2}}& {\textstyle{1\o...
...extstyle{1\over 2}}& 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & 1\end{array}\right]$ (21)
$\displaystyle C$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}-1 & 0 & 0 & 0 \\  0 & 1 & 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & -1\end{array}\right]$ (22)
$\displaystyle D$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}{\textstyle{1\over 2}}& -{\textstyle{1\o...
...xtstyle{1\over 2}}& 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & -1\end{array}\right]$ (23)
$\displaystyle E$ $\textstyle =$ $\displaystyle \left[\begin{array}{cccc}{\textstyle{1\over 2}}& {\textstyle{1\ov...
...tstyle{1\over 2}}& 0 & 0\\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & -1\end{array}\right].$ (24)

See also Dihedral Group, Finite Group D4, Finite Group Z6



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26