info prev up next book cdrom email home

Gaussian Elimination

A method for solving Matrix Equations of the form

\begin{displaymath}
{\hbox{\sf A}}{\bf x}={\bf b}.
\end{displaymath} (1)

Starting with the system of equations
\begin{displaymath}
\left[{\matrix{
a_{11} & a_{12} & \cdots & a_{1k}\cr
a_{21...
...ht]
= \left[{\matrix{b_1\cr b_2\cr \vdots\cr b_k\cr}}\right],
\end{displaymath} (2)

compose the augmented Matrix ``equation''
\begin{displaymath}
\left[\matrix{
a_{11} & a_{12} & \cdots & a_{1k}\cr
a_{21}...
...right]
\left[{\matrix{x_1\cr x_2\cr \vdots\cr x_k\cr}}\right].
\end{displaymath} (3)

Then, perform Matrix operations to put the augmented Matrix into the form
\begin{displaymath}
\left[\matrix{
a_{11}' & a_{12}' & \cdots & a_{1k}'\cr
0 &...
...right]
\left[{\matrix{x_1\cr x_2\cr \vdots\cr x_k\cr}}\right].
\end{displaymath} (4)

Solve the equation of the $k$th row for $x_k$, then substitute back into the equation of the $(k-1)$st row obtain a solution for $x_{k-1}$, etc., according to the formula
\begin{displaymath}
x_i = {1\over a'_{ii}} \left({b'_i-\sum_{j=i+1}^k a'_{ij}x_j}\right).
\end{displaymath} (5)

See also Gauss-Jordan Elimination, LU Decomposition, Matrix Equation, Square Root Method




© 1996-9 Eric W. Weisstein
1999-05-25