A generalization of the Fibonacci Numbers defined by
and the Recurrence Relation
(1) |
(2) |
(3) |
(4) |
(5) |
(6) |
Horadam (1965) defined the generalized Fibonacci numbers as
, where , , , and
are Integers, , , and
for . They satisfy the identities
(7) |
(8) |
(9) |
(10) |
(11) | |||
(12) |
Another generalization of the Fibonacci numbers is denoted . Given and , define the generalized Fibonacci
number by
for ,
(13) |
(14) |
(15) |
See also Fibonacci Number
References
Bicknell, M. ``A Primer for the Fibonacci Numbers, Part VIII: Sequences of Sums from Pascal's Triangle.''
Fib. Quart. 9, 74-81, 1971.
Bicknell-Johnson, M. and Spears, C. P. ``Classes of Identities for the Generalized Fibonacci Numbers
for Matrices with Constant Valued Determinants.'' Fib. Quart. 34, 121-128, 1996.
Dujella, A. ``Generalized Fibonacci Numbers and the Problem of Diophantus.'' Fib. Quart. 34, 164-175, 1996.
Horadam, A. F. ``Generating Functions for Powers of a Certain Generalized Sequence of Numbers.'' Duke Math. J. 32, 437-446, 1965.
Horadam, A. F. ``Generalization of a Result of Morgado.'' Portugaliae Math. 44, 131-136, 1987.
Horadam, A. F. and Shannon, A. G. ``Generalization of Identities of Catalan and Others.'' Portugaliae Math. 44, 137-148, 1987.
Morgado, J. ``Note on Some Results of A. F. Horadam and A. G. Shannon Concerning a Catalan's Identity on Fibonacci Numbers.''
Portugaliae Math. 44, 243-252, 1987.
© 1996-9 Eric W. Weisstein