info prev up next book cdrom email home

Generalized Hyperbolic Functions

In 1757, V. Riccati first recorded the generalizations of the Hyperbolic Functions defined by

\begin{displaymath}
F_{n,r}^\alpha(x)\equiv \sum_{k=0}^\infty {\alpha^k\over (nk+r)!} x^{nk+r},
\end{displaymath} (1)

for $r=0$, ..., $n-1$, where $\alpha$ is Complex, with the value at $x=0$ defined by
\begin{displaymath}
F_{n,0}^\alpha(0)=1.
\end{displaymath} (2)

This is called the $\alpha$-hyperbolic function of order $n$ of the $r$th kind. The functions $F_{n,r}^\alpha$ satisfy
\begin{displaymath}
f^{(k)}(x)=\alpha f(x),
\end{displaymath} (3)

where
\begin{displaymath}
f^{(k)}(0)=\cases{0 & $k\not=r$, $0\leq k\leq n-1$,\cr 1 & $k=r$.\cr}
\end{displaymath} (4)

In addition,
\begin{displaymath}
{d\over dx} F_{n,r}^\alpha(x)=\cases{
F_{n,r-1}^\alpha(x) &...
... $0<r\leq n-1$\cr
\alpha F_{n,n-1}^\alpha(x) & for $r=0$.\cr}
\end{displaymath} (5)

The functions give a generalized Euler Formula
\begin{displaymath}
e^{{\root n\of\alpha}\,}=\sum_{r=0}^{n-1} ({\root n\of\alpha}\,)^r F_{n,r}^\alpha(x).
\end{displaymath} (6)

Since there are $n$ $n$th roots of $\alpha$, this gives a system of $n$ linear equations. Solving for $F_{n,r}^\alpha$ gives
\begin{displaymath}
F_{n,r}^\alpha(x)={1\over n}({\root n\of\alpha}\,)^{-r} \sum...
...mathop{\rm exp}\nolimits ({\omega_n}^k {\root n\of\alpha}\,x),
\end{displaymath} (7)

where
\begin{displaymath}
\omega_n=\mathop{\rm exp}\nolimits \left({2\pi i\over n}\right)
\end{displaymath} (8)

is a Primitive Root of Unity.


The Laplace Transform is

\begin{displaymath}
\int_0^\infty e^{-st}F_{n,r}^\alpha(at)\,dt={s^{n-r-1} a^r\over s^n+\alpha a_n}.
\end{displaymath} (9)

The generalized hyperbolic function is also related to the Mittag-Leffler Function $E_\gamma(x)$ by
\begin{displaymath}
F_{n,0}^1(x)=E_n(x^n).
\end{displaymath} (10)

The values $n=1$ and $n=2$ give the exponential and circular/hyperbolic functions (depending on the sign of $\alpha$), respectively.

$\displaystyle F_{1,0}^\alpha(x)$ $\textstyle =$ $\displaystyle e^{\alpha x}$ (11)
$\displaystyle F_{2,0}^\alpha(x)$ $\textstyle =$ $\displaystyle \cosh(\sqrt{\alpha}\,x)$ (12)
$\displaystyle F_{2,1}^\alpha(x)$ $\textstyle =$ $\displaystyle {\sinh(\sqrt{\alpha}\,x)\over\sqrt{\alpha}}.$ (13)

For $\alpha=1$, the first few functions are
$\displaystyle F_{1,0}^1(x)$ $\textstyle =$ $\displaystyle e^x$  
$\displaystyle F_{2,0}^1(x)$ $\textstyle =$ $\displaystyle \cosh x$  
$\displaystyle F_{2,1}^1(x)$ $\textstyle =$ $\displaystyle \sinh x$  
$\displaystyle F_{3,0}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 3}}[e^x+2e^{-x/2}\cos({\textstyle{1\over 2}}\sqrt{3}\,x)]$  
$\displaystyle F_{3,1}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 3}}[e^x+2e^{-x/2}\cos({\textstyle{1\over 2}}\sqrt{3}\,x+{\textstyle{1\over 3}}\pi)]$  
$\displaystyle F_{3,2}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 3}}[e^x+2e^{-x/2}\cos({\textstyle{1\over 2}}\sqrt{3}\,x-{\textstyle{1\over 3}}\pi)]$  
$\displaystyle F_{4,0}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(\cosh x+\cos x)$  
$\displaystyle F_{4,1}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(\sinh x+\sin x)$  
$\displaystyle F_{4,2}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(\cosh x-\cos x)$  
$\displaystyle F_{4,3}^1(x)$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(\sinh x-\sin x).$  

See also Hyperbolic Functions, Mittag-Leffler Function


References

Kaufman, H. ``A Biographical Note on the Higher Sine Functions.'' Scripta Math. 28, 29-36, 1967.

Muldoon, M. E. and Ungar, A. A. ``Beyond Sin and Cos.'' Math. Mag. 69, 3-14, 1996.

Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. A=B. Wellesley, MA: A. K. Peters, 1996.

Ungar, A. ``Generalized Hyperbolic Functions.'' Amer. Math. Monthly 89, 688-691, 1982.

Ungar, A. ``Higher Order Alpha-Hyperbolic Functions.'' Indian J. Pure. Appl. Math. 15, 301-304, 1984.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25