The Integer Sequence defined by the Recurrence Relation
takes a value of 1/2 for of the form with , 2, .... Pickover (1996) gives a table of analogous values of corresponding to different values of .
See also Blancmange Function, Hofstadter's Q-Sequence, Mallow's Sequence
References
Conolly, B. W. ``Meta-Fibonacci Sequences.'' In Fibonacci and Lucas Numbers, and the Golden Section
(Ed. S. Vajda). New York: Halstead Press, pp. 127-138, 1989.
Conway, J. ``Some Crazy Sequences.'' Lecture at AT&T Bell Labs, July 15, 1988.
Guy, R. K. ``Three Sequences of Hofstadter.'' §E31 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 231-232, 1994.
Kubo, T. and Vakil, R. ``On Conway's Recursive Sequence.'' Disc. Math. 152, 225-252, 1996.
Mallows, C. ``Conway's Challenging Sequence.'' Amer. Math. Monthly 98, 5-20, 1991.
Pickover, C. A. ``The Drums of Ulupu.'' In Mazes for the Mind: Computers and the Unexpected. New York:
St. Martin's Press, 1993.
Pickover, C. A. ``The Crying of Fractal Batrachion 1,489.'' Ch. 25 in Keys to Infinity. New York:
W. H. Freeman, pp. 183-191, 1995.
Schroeder, M. ``John Horton Conway's `Death Bet.''' Fractals, Chaos, Power Laws.
New York: W. H. Freeman, pp. 57-59, 1991.
Sloane, N. J. A. Sequence
A004001/M0276
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
© 1996-9 Eric W. Weisstein