info prev up next book cdrom email home

Hypocycloid Evolute

\begin{figure}\begin{center}\BoxedEPSF{HypocycloidEvolute.epsf scaled 700}\end{center}\end{figure}

For $x(0)=a$,

$\displaystyle x$ $\textstyle =$ $\displaystyle {a\over a-2b} \left[{(a-b)\cos\phi-b\cos\left({{a-b\over b}\phi}\right)}\right]$  
$\displaystyle y$ $\textstyle =$ $\displaystyle {a\over a-2b} \left[{(a-b)\sin\phi+b\sin\left({{a-b\over b}\phi}\right)}\right].$  

If $a/b=n$, then
$\displaystyle x$ $\textstyle =$ $\displaystyle {1\over n-2}[(n-1)\cos\phi-\cos[(n-1)\phi]a$  
$\displaystyle y$ $\textstyle =$ $\displaystyle {1\over n-2}[(n-1)\sin\phi+\sin[(n-1)\phi]a.$  

This is just the original Hypocycloid scaled by the factor $(n-2)/n$ and rotated by $1/(2n)$ of a turn.




© 1996-9 Eric W. Weisstein
1999-05-25