info prev up next book cdrom email home

Hypocycloid Involute

\begin{figure}\begin{center}\BoxedEPSF{HypocycloidInvolute.epsf scaled 700}\end{center}\end{figure}

The Hypocycloid

$\displaystyle x$ $\textstyle =$ $\displaystyle {a\over a-2b} \left[{(a-b)\cos\phi-b\cos\left({{a-b\over b}\phi}\right)}\right]$  
$\displaystyle y$ $\textstyle =$ $\displaystyle {a\over a-2b} \left[{(a-b)\sin\phi+b\sin\left({{a-b\over b}\phi}\right)}\right]$  

has Involute
$\displaystyle x$ $\textstyle =$ $\displaystyle {a-2b\over a} \left[{(a-b)\cos\phi+b\cos\left({{a-b\over b}\phi}\right)}\right]$  
$\displaystyle y$ $\textstyle =$ $\displaystyle {a-2b\over a} \left[{(a-b)\sin\phi-b\sin\left({{a-b\over b}\phi}\right)}\right],$  

which is another Hypocycloid.




© 1996-9 Eric W. Weisstein
1999-05-25