info prev up next book cdrom email home

Imaginary Part

The imaginary part $\Im$ of a Complex Number $z=x+iy$ is the Real Number multiplying i, so $\Im[x+iy]=y$. In terms of $z$ itself,

\begin{displaymath}
\Im[z]={z-z^*\over 2i},
\end{displaymath}

where $z^*$ is the Complex Conjugate of $z$.

See also Absolute Square, Complex Conjugate, Real Part


References

Abramowitz, M. and Stegun, C. A. (Eds.). Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 16, 1972.




© 1996-9 Eric W. Weisstein
1999-05-26