A Latin rectangle is a Matrix with elements
such that
entries in each row and column are distinct. If , the special case of a Latin Square results. A normalized
Latin rectangle has first row
and first column
. Let be the number
of normalized Latin rectangles, then the total number of Latin rectangles is
The asymptotic value of
was found by Godsil and McKay (1990). The numbers of Latin
rectangles are given in the following table from McKay and Rogoyski (1995).
The entries and are
omitted, since
1 | 1 | 1 |
2 | 1 | 1 |
3 | 2 | 1 |
4 | 2 | 3 |
4 | 3 | 4 |
5 | 2 | 11 |
5 | 3 | 46 |
5 | 4 | 56 |
6 | 2 | 53 |
6 | 3 | 1064 |
6 | 4 | 6552 |
6 | 5 | 9408 |
7 | 2 | 309 |
7 | 3 | 35792 |
7 | 4 | 1293216 |
7 | 5 | 11270400 |
7 | 6 | 16942080 |
8 | 2 | 2119 |
8 | 3 | 1673792 |
8 | 4 | 420909504 |
8 | 5 | 27206658048 |
8 | 6 | 335390189568 |
8 | 7 | 535281401856 |
9 | 2 | 16687 |
9 | 3 | 103443808 |
9 | 4 | 207624560256 |
9 | 5 | 112681643083776 |
9 | 6 | 12952605404381184 |
9 | 7 | 224382967916691456 |
9 | 8 | 377597570964258816 |
10 | 2 | 148329 |
10 | 3 | 8154999232 |
10 | 4 | 147174521059584 |
10 | 5 | 746988383076286464 |
10 | 6 | 870735405591003709440 |
10 | 7 | 177144296983054185922560 |
10 | 8 | 4292039421591854273003520 |
10 | 9 | 7580721483160132811489280 |
References
Athreya, K. B.; Pranesachar, C. R.; and Singhi, N. M. ``On the Number of Latin Rectangles and Chromatic Polynomial
of .'' Europ. J. Combin. 1, 9-17, 1980.
Colbourn, C. J. and Dinitz, J. H. (Eds.) CRC Handbook of Combinatorial Designs.
Boca Raton, FL: CRC Press, 1996.
Godsil, C. D. and McKay, B. D. ``Asymptotic Enumeration of Latin Rectangles.'' J. Combin. Th. Ser. B
48, 19-44, 1990.
Kerawla, S. M. ``The Enumeration of Latin Rectangle of Depth Three by Means of Difference Equation'' [sic].
Bull. Calcutta Math. Soc. 33, 119-127, 1941.
McKay, B. D. and Rogoyski, E. ``Latin Squares of Order 10.'' Electronic J. Combinatorics 2, N3 1-4, 1995.
http://www.combinatorics.org/Volume_2/volume2.html#N3.
Ryser, H. J. ``Latin Rectangles.'' §3.3 in
Combinatorial Mathematics. Buffalo, NY: Math. Assoc. of Amer., pp. 35-37, 1963.
Sloane, N. J. A. Sequence
A001009
in ``The On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
© 1996-9 Eric W. Weisstein