Find the plane Lamina of least Area which is capable of covering any plane figure of unit General
Diameter. A Unit Circle is too small, but a Hexagon circumscribed on the Unit
Circle is too large. More specifically, the Area is bounded by
See also Area, Borsuk's Conjecture, Diameter (General), Kakeya Needle Problem
References
Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 99, 1987.
Coxeter, H. S. M. ``Lebesgue's Minimal Problem.'' Eureka 21, 13, 1958.
Grünbaum, B. ``Borsuk's Problem and Related Questions.'' Proc. Sympos. Pure Math, Vol. 7.
Providence, RI: Amer. Math. Soc., pp. 271-284, 1963.
Kakeya, S. ``Some Problems on Maxima and Minima Regarding Ovals.'' Sci. Reports Tôhoku Imperial Univ., Ser. 1 (Math., Phys., Chem.)
6, 71-88, 1917.
Ogilvy, C. S. Excursions in Geometry. New York: Dover, pp. 142-144, 1990.
Pál, J. ``Ueber ein elementares Variationsproblem.'' Det Kgl. Danske videnkabernes selskab, Math.-fys. meddelelser 3, Nr. 2, 1-35, 1920.
Yaglom, I. M. and Boltyanskii, V. G. Convex Figures. New York: Holt, Rinehart, & Winston, pp. 18 and 100, 1961.