info prev up next book cdrom email home

Maclaurin Series

A series expansion of a function about 0,


\begin{displaymath}
f(x) = f(0)+f'(0)x+{f''(0)\over 2!} x^2+{f^{(3)}(0)\over 3!} x^3+\ldots +{f^{(n)}(0)\over n!} x^n+\ldots,
\end{displaymath} (1)

named after the Scottish mathematician Maclaurin. Maclaurin series for common functions include

${1\over 1-x} = 1+x+x^2+x^3+x^4+x^5+\ldots{\rm\ for\ } -1 < x < 1 $ (2)
$\mathop{\rm cn}\nolimits (x,k^2) =1-{\textstyle{1\over 2!}}x^2+{\textstyle{1\over 4!}}(1+4k^2)x^4+\ldots $ (3)
$\cos x = 1-{\textstyle{1\over 2!}}x^2+{\textstyle{1\over 4!}}x^4-{\textstyle{1\over 6!}}x^6-\ldots{\rm\ for\ } -\infty <x<\infty $ (4)
$\cos^{-1} x = {\textstyle{1\over 2}}\pi-x-{\textstyle{1\over 6}}x^3-{\textstyle{3\over 40}}x^5-{\textstyle{5\over 112}}x^7-\ldots {\rm\ for\ } -1 < x < 1 $ (5)
$\cosh x = 1+{\textstyle{1\over 2}}x^2+{\textstyle{1\over 24}}x^4+{\textstyle{1\over 720}}x^6+{\textstyle{1\over 40{},320}}x^8+\ldots$ (6)
$\cosh^{-1} (1+x) =\sqrt{2x}\, (1-{\textstyle{1\over 2}}x+{\textstyle{3\over 160}} x^2-{\textstyle{5\over 896}} x^3+\ldots)$ (7)
$\cot x = x^{-1}-{\textstyle{1\over 3}}x-{\textstyle{1\over 45}}x^3-{\textstyle{2\over 945}}x^5-{\textstyle{1\over 4725}}x^7-\ldots$ (8)
$\cot^{-1}x = {\textstyle{1\over 2}}\pi-x+{\textstyle{1\over 3}}x^3-{\textstyle{1\over 5}}x^5+{\textstyle{1\over 7}}x^7-{\textstyle{1\over 9}}x^9+\ldots$ (9)
$\phantom{\cot^{-1}x} = x^{-1}-{\textstyle{1\over 3}}x^{-3}+{\textstyle{1\over 5}}x^{-5}-{\textstyle{1\over 7}}x^{-7}+{\textstyle{1\over 9}}x^{-9}+\ldots$ (10)
$\coth x =x^{-1}+{\textstyle{1\over 3}}x-{\textstyle{1\over 45}} x^4+{\textstyle{2\over 945}} x^5-{\textstyle{1\over 4725}}x^7+\ldots$ (11)
$\coth^{-1} (1+x) = {\textstyle{1\over 2}}\ln 2-{\textstyle{1\over 2}}\ln x+{\textstyle{1\over 4}}x-{\textstyle{1\over 16}}x^2+\ldots$ (12)
$\csc x =x^{-1}+{\textstyle{1\over 6}}x+{\textstyle{7\over 360}}x^3+{\textstyle{31\over 15120}}x^5+\ldots$ (13)
$\mathop{\rm csch}\nolimits x = x^{-1} -{\textstyle{1\over 6}} x+{\textstyle{7\over 360}}x^3+{\textstyle{31\over 15120}}x^5+\ldots$ (14)
$\mathop{\rm csch}\nolimits ^{-1} x =\ln 2-\ln x+{\textstyle{1\over 4}}x^2-{\textstyle{3\over 32}} x^4 +{\textstyle{5\over 96}} x^6-\ldots$ (15)
$\mathop{\rm dn}\nolimits (x,k^2) x =1-{\textstyle{1\over 2!}} k^2x^2+{\textstyle{1\over 4!}}k^2(4+k^2)x^4+\ldots$ (16)
$\mathop{\rm erf}\nolimits x = {1\over\sqrt{\pi}}\left({2x-{\textstyle{2\over 3}} x^3+{\textstyle{1\over 5}} x^5 -{\textstyle{1\over 21}} x^7+\ldots}\right)$ (17)
$e^x = 1+x+{\textstyle{1\over 2!}}x^2+{\textstyle{1\over 3!}}x^3+{\textstyle{1\over 4!}}x^4 +\ldots {\rm\ for\ } -\infty<x<\infty$ (18)
${}_2F_1(\alpha,\beta,\gamma ;x) = 1 + {\alpha\beta\over 1!\gamma} x + {\alpha(\alpha+1)\beta(\beta+1)\over 2!\gamma(\gamma+1)} x^2 + \ldots$ (19)
$\ln(1+x) = x-{\textstyle{1\over 2}}x^2 +{\textstyle{1\over 3}}x^3-{\textstyle{1\over 4}}x^4+\ldots{\rm\ for\ } -1 < x < 1$ (20)
$\ln\left({1+x\over 1-x}\right)= 2x+{\textstyle{2\over 3}}x^3+{\textstyle{2\over 5}}x^5+{\textstyle{2\over 7}}x^7+\ldots {\rm\ for\ } -1 < x < 1 $ (21)
$\sec x =1+{\textstyle{1\over 2}}x^2+{\textstyle{5\over 24}}x^4+{\textstyle{61\over 720}}x^6+{\textstyle{277\over 8064}}x^8+\ldots$ (22)
$\mathop{\rm sech}\nolimits x = 1-{\textstyle{1\over 2}}x^2+{\textstyle{5\over 24}}x^4-{\textstyle{61\over 720}}x^6+{\textstyle{277\over 8064}}x^8+\ldots$ (23)
$\mathop{\rm sech}\nolimits ^{-1} x =\ln 2-\ln x-{\textstyle{1\over 4}}x^2-{\textstyle{3\over 32}} x^4 -\ldots$ (24)
$\sin x = x-{\textstyle{1\over 3!}}x^3+{\textstyle{1\over 5!}}x^5-{\textstyle{1\over 7!}}x^7+\ldots{\rm\ for\ } -\infty<x<\infty $ (25)
$\sin^{-1} x = x+{\textstyle{1\over 6}}x^3+{\textstyle{3\over 40}}x^5+{\textstyle{5\over 112}}x^7+{\textstyle{35\over 1152}}x^9+\ldots$ (26)
$\sinh x = x+{\textstyle{1\over 6}}x^3+{\textstyle{1\over 120}} x^5+{\textstyle{1\over 5040}}x^7+{\textstyle{1\over 362{,}880}} x^9+ \ldots$ (27)
$\sinh^{-1} x = x-{\textstyle{1\over 6}}x^3+{\textstyle{3\over 40}}x^5-{\textstyle{5\over 112}}x^7+{\textstyle{35\over 1152}}x^9-\ldots$ (28)
$\mathop{\rm sn}\nolimits (x,k^2)={\textstyle{1\over 3!}}(1+k^2)x^3+{\textstyle{1\over 5!}}(1+14k^2+k^4)x^5+\ldots$ (29)
$\tan x = x+{\textstyle{1\over 3}}x^3+{\textstyle{2\over 15}}x^5+{\textstyle{17\over 315}}x^7+{\textstyle{62\over 2835}}x^9+\ldots$ (30)
$\tan^{-1} x = x-{\textstyle{1\over 3}}x^3+{\textstyle{1\over 5}}x^5-{\textstyle{1\over 7}}x^7+\ldots {\rm\ for\ } -1 < x < 1 $ (31)
$\tan^{-1}(1+x) = {\textstyle{1\over 4}}\pi+{\textstyle{1\over 2}}x-{\textstyle{1\over 4}}x^2+{\textstyle{1\over 12}}x^3+{\textstyle{1\over 40}}x^5+\ldots$ (32)
$\tanh x = x-{\textstyle{1\over 3}}x^3+{\textstyle{2\over 15}}x^5-{\textstyle{17\over 315}}x^7+{\textstyle{62\over 2835}}x^9+\ldots$ (33)
$\tanh^{-1} x = x+{\textstyle{1\over 3}}x^3+{\textstyle{1\over 5}}x^5+{\textstyle{1\over 7}}x^7+{\textstyle{1\over 9}}x^9+\ldots.$ (34)
The explicit forms for some of these are
${1\over 1-x} = \sum_{n=0}^\infty x^n$ (35)
$\cos x = \sum_{n=0}^\infty {(-1)^n \over(2n)!}x^{2n}$ (36)
$\csc x = \sum_{n=0}^\infty {(-1)^{n+1} 2 (2^{2n-1}-1)B_{2n}\over (2n)!} x^{2n-1}$ (37)
$e^x = \sum_{n=0}^\infty {1\over n!} x^n$ (38)
$\ln(1+x) = \sum_{n=1}^\infty {(-1)^{n+1}\over n} x^n$ (39)
$\ln\left({1+x\over 1-x}\right)= \sum_{n=1}^\infty {2\over(2n-1)}x^{2n-1}$ (40)
$\sec x = \sum_{n=0}^\infty{(-1)^n E_{2n}\over (2n)!} x^{2n}$ (41)
$\sin x = \sum_{n=1}^\infty {(-1)^{n+1}\over (2n-1)!} x^{2n-1}$ (42)
$\tan x = \sum_{n=1}^\infty {(-1)^{n+1}2^{2n}(2^{2n}-1)B_{2n}\over(2n)!} x^{2n-1} $ (43)
$\tan^{-1} x = \sum_{n=1}^\infty {(-1)^{n+1}\over 2n-1}x^{2n-1}$ (44)
$\tanh^{-1} x = \sum_{n=1}^\infty {1\over 2n-1}x^{2n-1},$ (45)
where $B_n$ are Bernoulli Numbers and $E_n$ are Euler Numbers.

See also Alcuin's Sequence, Lagrange Expansion, Legendre Series, Taylor Series


References

Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, pp. 299-300, 1987.




© 1996-9 Eric W. Weisstein
1999-05-26