info prev up next book cdrom email home

Morgan-Voyce Polynomial

Polynomials related to the Brahmagupta Polynomials. They are defined by the Recurrence Relations

\begin{displaymath}
b_n(x)=xB_{n-1}(x)+b_{n-1}(x)
\end{displaymath} (1)


\begin{displaymath}
B_n(x)=(x+1)B_{n-1}(x)+b_{n-1}(x)
\end{displaymath} (2)

for $n\geq 1$, with
\begin{displaymath}
b_0(x)=B_0(x)=1.
\end{displaymath} (3)

Alternative recurrences are
\begin{displaymath}
B_{n+1}B_{n-1}-{B_n}^2=-1
\end{displaymath} (4)


\begin{displaymath}
b_{n+1}b_{n-1}-{b_n}^2=x.
\end{displaymath} (5)

The polynomials can be given explicitly by the sums
$\displaystyle B_n(x)$ $\textstyle =$ $\displaystyle \sum_{k=0}^n {n+k-1\choose n-k}x^k$ (6)
$\displaystyle b_n(x)$ $\textstyle =$ $\displaystyle \sum_{k=0}^n {n+k\choose n-k}x^k.$ (7)


Defining the Matrix

\begin{displaymath}
{\hbox{\sf Q}}=\left[{\matrix{x+2 & -1\cr 1 & 0\cr}}\right]
\end{displaymath} (8)

gives the identities
\begin{displaymath}
{\hbox{\sf Q}}^n=\left[{\matrix{B_n & -B_{n-1}\cr B_{n-1} & -B_{n-2}\cr}}\right]
\end{displaymath} (9)


\begin{displaymath}
{\hbox{\sf Q}}^n-{\hbox{\sf Q}}^{n-1}=\left[{\matrix{b_n & -b_{n-1}\cr b_{n-1} & -b_{n-2}\cr}}\right].
\end{displaymath} (10)


Defining

$\displaystyle \cos\theta$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(x+2)$ (11)
$\displaystyle \cosh\phi$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(x+2)$ (12)

gives
$\displaystyle B_n(x)$ $\textstyle =$ $\displaystyle {\sin[(n+1)\theta]\over\sin\theta}$ (13)
$\displaystyle B_n(x)$ $\textstyle =$ $\displaystyle {\sinh[(n+1)\phi]\over\sinh\phi}$ (14)

and
$\displaystyle b_n(x)$ $\textstyle =$ $\displaystyle {\cos[{\textstyle{1\over 2}}(2n+1)\theta]\over\cos({\textstyle{1\over 2}}\theta)}$ (15)
$\displaystyle b_n(x)$ $\textstyle =$ $\displaystyle {\cosh[{\textstyle{1\over 2}}(2n+1)\phi]\over\cosh({\textstyle{1\over 2}}\theta)}.$ (16)


The Morgan-Voyce polynomials are related to the Fibonacci Polynomials $F_n(x)$ by

$\displaystyle b_n(x^2)$ $\textstyle =$ $\displaystyle F_{2n+1}(x)$ (17)
$\displaystyle B_n(x^2)$ $\textstyle =$ $\displaystyle {1\over x}F_{2n+2}(x)$ (18)

(Swamy 1968).


$B_n(x)$ satisfies the Ordinary Differential Equation

\begin{displaymath}
x(x+4)y''+3(x+2)y'-n(n+2)y=0,
\end{displaymath} (19)

and $b_n(x)$ the equation
\begin{displaymath}
x(x+4)y''+2(x+1)y'-n(n+1)y=0.
\end{displaymath} (20)

These and several other identities involving derivatives and integrals of the polynomials are given by Swamy (1968).

See also Brahmagupta Polynomial, Fibonacci Polynomial


References

Lahr, J. ``Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line Theory.'' In Fibonacci Numbers and Their Applications (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam). Dordrecht, Netherlands: Reidel, 1986.

Morgan-Voyce, A. M. ``Ladder Network Analysis Using Fibonacci Numbers.'' IRE Trans. Circuit Th. CT-6, 321-322, Sep. 1959.

Swamy, M. N. S. ``Properties of the Polynomials Defined by Morgan-Voyce.'' Fib. Quart. 4, 73-81, 1966.

Swamy, M. N. S. ``More Fibonacci Identities.'' Fib. Quart. 4, 369-372, 1966.

Swamy, M. N. S. ``Further Properties of Morgan-Voyce Polynomials.'' Fib. Quart. 6, 167-175, 1968.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26