Polynomials related to the Brahmagupta Polynomials. They are defined by the
Recurrence Relations
(1) |
(2) |
(3) |
(4) |
(5) |
(6) | |||
(7) |
Defining the Matrix
(8) |
(9) |
(10) |
Defining
(11) | |||
(12) |
(13) | |||
(14) |
(15) | |||
(16) |
The Morgan-Voyce polynomials are related to the Fibonacci Polynomials by
(17) | |||
(18) |
satisfies the Ordinary Differential Equation
(19) |
(20) |
See also Brahmagupta Polynomial, Fibonacci Polynomial
References
Lahr, J. ``Fibonacci and Lucas Numbers and the Morgan-Voyce Polynomials in Ladder Networks and in Electric Line
Theory.'' In Fibonacci Numbers and Their Applications (Ed. G. E. Bergum, A. N. Philippou, and A. F. Horadam).
Dordrecht, Netherlands: Reidel, 1986.
Morgan-Voyce, A. M. ``Ladder Network Analysis Using Fibonacci Numbers.'' IRE Trans. Circuit Th. CT-6, 321-322, Sep. 1959.
Swamy, M. N. S. ``Properties of the Polynomials Defined by Morgan-Voyce.'' Fib. Quart. 4, 73-81, 1966.
Swamy, M. N. S. ``More Fibonacci Identities.'' Fib. Quart. 4, 369-372, 1966.
Swamy, M. N. S. ``Further Properties of Morgan-Voyce Polynomials.'' Fib. Quart. 6, 167-175, 1968.
© 1996-9 Eric W. Weisstein