A sphere is parallelizable if there exist cuts containing linearly independent tangent vectors. There exist only three parallelizable spheres: , , and (Adams 1962, Le Lionnais 1983).
See also Sphere
References
Adams, J. F. ``On the Non-Existence of Elements of Hopf Invariant One.'' Bull. Amer. Math. Soc. 64, 279-282, 1958.
Adams, J. F. ``On the Non-Existence of Elements of Hopf Invariant One.'' Ann. Math. 72, 20-104, 1960.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 49, 1983.