info prev up next book cdrom email home

Position Four-Vector

The Contravariant Four-Vector arising in special and general relativity ,

\begin{displaymath}
x^\mu =\left[{\matrix{x^0\cr x^1\cr x^2\cr x^3\cr}}\right]\equiv\left[{\matrix{ct\cr x\cr y\cr z\cr}}\right],
\end{displaymath}

where $c$ is the speed of light and $t$ is time. Multiplication of two four-vectors gives the spacetime interval
$\displaystyle I$ $\textstyle =$ $\displaystyle g_{\mu\nu}x^\mu x^\nu=(x^0)^2-(x^1)^2-(x^2)^2-(x^3)^2$  
  $\textstyle =$ $\displaystyle (ct)^2-(x^1)^2-(x^2)^2-(x^3)^2$  

See also Four-Vector, Lorentz Transformation, Quaternion




© 1996-9 Eric W. Weisstein
1999-05-26