info prev up next book cdrom email home

Quaternion

A member of a noncommutative Division Algebra first invented by William Rowan Hamilton. The quaternions are sometimes also known as Hypercomplex Numbers and denoted $\Bbb{H}$. While the quaternions are not commutative, they are associative.


The quaternions can be represented using complex $2\times 2$ Matrices

\begin{displaymath}
H=\left[{\matrix{z & w\cr -w^* & z^*\cr}}\right] = \left[{\matrix{a+ib & c+id\cr -c+id & a-ib\cr}}\right],
\end{displaymath} (1)

where $z$ and $w$ are Complex Numbers, $a$, $b$, $c$, and $d$ are Real, and $z^*$ is the Complex Conjugate of $z$. By analogy with the Complex Numbers being representable as a sum of Real and Imaginary Parts, $a\cdot 1+bi$, a quaternion can also be written as a linear combination
\begin{displaymath}
H = a{\hbox{\sf U}} + b{\hbox{\sf I}} + c{\hbox{\sf J}} + d{\hbox{\sf K}}
\end{displaymath} (2)

of the four matrices
$\displaystyle {\hbox{\sf U}}$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cc}1 & 0\\  0 & 1\end{array}\right]$ (3)
$\displaystyle {\hbox{\sf I}}$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cc}i & 0\\  0 & -i\end{array}\right]$ (4)
$\displaystyle {\hbox{\sf J}}$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cc}0 & 1\\  -1 & 0\end{array}\right]$ (5)
$\displaystyle {\hbox{\sf K}}$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cc}0 & i\\  i & 0\end{array}\right].$ (6)

(Note that here, ${\hbox{\sf U}}$ is used to denote the Identity Matrix, not ${\hbox{\sf I}}$.) The matrices are closely related to the Pauli Spin Matrices $\sigma_x$, $\sigma_y$, $\sigma_z$, combined with the Identity Matrix. From the above definitions, it follows that
$\displaystyle {\hbox{\sf I}}^2$ $\textstyle =$ $\displaystyle -{\hbox{\sf U}}$ (7)
$\displaystyle {\hbox{\sf J}}^2$ $\textstyle =$ $\displaystyle -{\hbox{\sf U}}$ (8)
$\displaystyle {\hbox{\sf K}}^2$ $\textstyle =$ $\displaystyle -{\hbox{\sf U}}.$ (9)

Therefore ${\hbox{\sf I}}$, ${\hbox{\sf J}}$, and ${\hbox{\sf K}}$ are three essentially different solutions of the matrix equation
\begin{displaymath}
{\hbox{\sf X}}^2 = -{\hbox{\sf U}},
\end{displaymath} (10)

which could be considered the square roots of the negative identity matrix.


In $\Bbb{R}^4$, the basis of the quaternions can be given by

$\displaystyle i$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cccc}0 & 1 & 0 & 0 \\  -1 & 0 & 0 & 0 \\  0 & 0 & 0 & 1 \\  0 & 0 & -1 & 0\end{array}\right]$ (11)
$\displaystyle j$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cccc}0 & 0 & 0 & -1 \\  0 & 0 & -1 & 0 \\  0 & 1 & 0 & 0 \\  1 & 0 & 0 & 0\end{array}\right]$ (12)
$\displaystyle k$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cccc}0 & 0 & -1 & 0 \\  0 & 0 & 0 & 1 \\  1 & 0 & 0 & 0 \\  0 & -1 & 0 & 0\end{array}\right]$ (13)
$\displaystyle 1$ $\textstyle \equiv$ $\displaystyle \left[\begin{array}{cccc}1 & 0 & 0 & 0 \\  0 & 1 & 0 & 0 \\  0 & 0 & 1 & 0 \\  0 & 0 & 0 & 1\end{array}\right].$ (14)


The quaternions satisfy the following identities, sometimes known as Hamilton's Rules,

\begin{displaymath}
i^2 = j^2 = k^2 = -1
\end{displaymath} (15)


\begin{displaymath}
ij = -ji = k
\end{displaymath} (16)


\begin{displaymath}
jk = -kj = i
\end{displaymath} (17)


\begin{displaymath}
ki = -ik = j.
\end{displaymath} (18)

They have the following multiplication table.

  1 $i$ $j$ $k$
1 1 $i$ $j$ $k$
$i$ $i$ $-1$ $k$ $-j$
$j$ $j$ $-k$ $-1$ $i$
$k$ $k$ $j$ $-i$ $-1$

The quaternions $\pm 1$, $\pm i$, $\pm j$, and $\pm k$ form a non-Abelian Group of order eight (with multiplication as the group operation) known as $Q_8$.


The quaternions can be written in the form

\begin{displaymath}
a=a_1+a_2i+a_3j+a_4k.
\end{displaymath} (19)

The conjugate quaternion is given by
\begin{displaymath}
a^*=a_1-a_2i-a_3j-a_4k.
\end{displaymath} (20)

The sum of two quaternions is then
\begin{displaymath}
a+b=(a_1+b_1)+(a_2+b_2)i+(a_3+b_3)j+(a_4+b_4)k,
\end{displaymath} (21)

and the product of two quaternions is
$\displaystyle ab$ $\textstyle =$ $\displaystyle (a_1b_1-a_2b_2-a_3b_3-a_4b_4)$  
  $\textstyle \phantom{=}$ $\displaystyle +(a_1b_2+a_2b_1+a_3b_4-a_4b_3)i$  
  $\textstyle \phantom{=}$ $\displaystyle +(a_1b_3-a_2b_4+a_3b_1+a_4b_2)j$  
  $\textstyle \phantom{=}$ $\displaystyle +(a_1b_4+a_2b_3-a_3b_2+a_4b_1)k,$ (22)

so the norm is
\begin{displaymath}
n(a)=\sqrt{aa^*}=\sqrt{a^*a}=\sqrt{{a_1}^2+{a_2}^2+{a_3}^2+{a_4}^2}\,.
\end{displaymath} (23)

In this notation, the quaternions are closely related to Four-Vectors.


Quaternions can be interpreted as a Scalar plus a Vector by writing

\begin{displaymath}
a=a_1+a_2i+a_3j+a_4k=(a_1, {\bf a}),
\end{displaymath} (24)

where ${\bf a}\equiv [a_2\,a_3\,a_4]$. In this notation, quaternion multiplication has the particularly simple form


\begin{displaymath}
q_1q_2=(s_1,{\bf v}_1)\cdot(s_2,{\bf v}_2) =(s_1s_2-{\bf v}_...
...bf v}_2, s_1{\bf v}_2+s_2{\bf v}_1+{\bf v}_1\times {\bf v}_2).
\end{displaymath} (25)

Division is uniquely defined (except by zero), so quaternions form a Division Algebra. The inverse of a quaternion is given by
\begin{displaymath}
a^{-1}={a^*\over aa^*},
\end{displaymath} (26)

and the norm is multiplicative
\begin{displaymath}
n(ab)=n(a)n(b).
\end{displaymath} (27)

In fact, the product of two quaternion norms immediately gives the Euler Four-Square Identity.


A rotation about the Unit Vector $\hat {\bf n}$ by an angle $\theta$ can be computed using the quaternion

\begin{displaymath}
q=(s,{\bf v})=(\cos({\textstyle{1\over 2}}\theta),\hat {\bf n}\sin({\textstyle{1\over 2}}\theta))
\end{displaymath} (28)

(Arvo 1994, Hearn and Baker 1996). The components of this quaternion are called Euler Parameters. After rotation, a point $p=(0,{\bf p})$ is then given by
\begin{displaymath}
p'=qpq^{-1}=qpq^*,
\end{displaymath} (29)

since $n(q)=1$. A concatenation of two rotations, first $q_1$ and then $q_2$, can be computed using the identity
\begin{displaymath}
q_2(q_1pq_1^*)q_2^*=(q_2q_1)p(q_1^*q_2^*)=(q_2q_1)p(q_2q_1)^*
\end{displaymath} (30)

(Goldstein 1980).

See also Biquaternion, Cayley-Klein Parameters, Complex Number, Division Algebra, Euler Parameters, Four-Vector, Octonion


References

Quaternions

Altmann, S. L. Rotations, Quaternions, and Double Groups. Oxford, England: Clarendon Press, 1986.

Arvo, J. Graphics Gems II. New York: Academic Press, pp. 351-354 and 377-380, 1994.

Baker, A. L. Quaternions as the Result of Algebraic Operations. New York: Van Nostrand, 1911.

Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Item 107, Feb. 1972.

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 230-234, 1996.

Crowe, M. J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. New York: Dover, 1994.

Dickson, L. E. Algebras and Their Arithmetics. New York: Dover, 1960.

Du Val, P. Homographies, Quaternions, and Rotations. Oxford, England: Oxford University Press, 1964.

Ebbinghaus, H. D.; Hirzebruch, F.; Hermes, H.; Prestel, A; Koecher, M.; Mainzer, M.; and Remmert, R. Numbers. New York: Springer-Verlag, 1990.

Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 151, 1980.

Hamilton, W. R. Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method. Dublin: Hodges and Smith, 1853.

Hamilton, W. R. Elements of Quaternions. London: Longmans, Green, 1866.

Hamilton, W. R. The Mathematical Papers of Sir William Rowan Hamilton. Cambridge, England: Cambridge University Press, 1967.

Hardy, A. S. Elements of Quaternions. Boston, MA: Ginn, Heath, & Co., 1881.

Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Cambridge, England: Clarendon Press, 1965.

Hearn, D. and Baker, M. P. Computer Graphics: C Version, 2nd ed. Englewood Cliffs, NJ: Prentice-Hall, pp. 419-420 and 617-618, 1996.

Joly, C. J. A Manual of Quaternions. London: Macmillan, 1905.

Julstrom, B. A. ``Using Real Quaternions to Represent Rotations in Three Dimensions.'' UMAP Modules in Undergraduate Mathematics and Its Applications, Module 652. Lexington, MA: COMAP, Inc., 1992.

Kelland, P. and Tait, P. G. Introduction to Quaternions, 3rd ed. London: Macmillan, 1904.

Nicholson, W. K. Introduction to Abstract Algebra. Boston, MA: PWS-Kent, 1993.

Tait, P. G. An Elementary Treatise on Quaternions, 3rd ed., enl. Cambridge, England: Cambridge University Press, 1890.

Tait, P. G. ``Quaternions.'' Encyclopædia Britannica, 9th ed. ca. 1886. ftp://ftp.netcom.com/pub/hb/hbaker/quaternion/tait/Encyc-Brit.ps.gz.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25