A member of a noncommutative Division Algebra first invented by William Rowan Hamilton. The quaternions are sometimes also known as Hypercomplex Numbers and denoted . While the quaternions are not commutative, they are associative.
The quaternions can be represented using complex Matrices
(1) |
(2) |
(3) | |||
(4) | |||
(5) | |||
(6) |
(7) | |||
(8) | |||
(9) |
(10) |
In , the basis of the quaternions can be given by
(11) | |||
(12) | |||
(13) | |||
(14) |
The quaternions satisfy the following identities, sometimes known as
Hamilton's Rules,
(15) |
(16) |
(17) |
(18) |
1 | ||||
1 | 1 | |||
The quaternions , , , and form a non-Abelian Group of order eight (with multiplication as the group operation) known as .
The quaternions can be written in the form
(19) |
(20) |
(21) |
(22) |
(23) |
Quaternions can be interpreted as a Scalar plus a Vector by writing
(24) |
(25) |
(26) |
(27) |
A rotation about the Unit Vector by an angle can be computed using the
quaternion
(28) |
(29) |
(30) |
See also Biquaternion, Cayley-Klein Parameters, Complex Number, Division Algebra, Euler Parameters, Four-Vector, Octonion
References
Quaternions
Altmann, S. L. Rotations, Quaternions, and Double Groups. Oxford, England: Clarendon Press, 1986.
Arvo, J. Graphics Gems II. New York: Academic Press, pp. 351-354 and 377-380, 1994.
Baker, A. L. Quaternions as the Result of Algebraic Operations. New York: Van Nostrand, 1911.
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT
Artificial Intelligence Laboratory, Memo AIM-239, Item 107, Feb. 1972.
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 230-234, 1996.
Crowe, M. J. A History of Vector Analysis: The Evolution of the Idea of a Vectorial System. New York: Dover, 1994.
Dickson, L. E. Algebras and Their Arithmetics. New York: Dover, 1960.
Du Val, P. Homographies, Quaternions, and Rotations. Oxford, England: Oxford University Press, 1964.
Ebbinghaus, H. D.; Hirzebruch, F.; Hermes, H.; Prestel, A; Koecher, M.; Mainzer, M.; and Remmert, R.
Numbers. New York: Springer-Verlag, 1990.
Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, p. 151, 1980.
Hamilton, W. R. Lectures on Quaternions: Containing a Systematic Statement of a New Mathematical Method. Dublin: Hodges and Smith, 1853.
Hamilton, W. R. Elements of Quaternions. London: Longmans, Green, 1866.
Hamilton, W. R. The Mathematical Papers of Sir William Rowan Hamilton. Cambridge, England: Cambridge University Press, 1967.
Hardy, A. S. Elements of Quaternions. Boston, MA: Ginn, Heath, & Co., 1881.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed.
Cambridge, England: Clarendon Press, 1965.
Hearn, D. and Baker, M. P. Computer Graphics: C Version, 2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, pp. 419-420 and 617-618, 1996.
Joly, C. J. A Manual of Quaternions. London: Macmillan, 1905.
Julstrom, B. A. ``Using Real Quaternions to Represent Rotations in Three Dimensions.''
UMAP Modules in Undergraduate Mathematics and Its Applications, Module 652. Lexington, MA: COMAP, Inc., 1992.
Kelland, P. and Tait, P. G. Introduction to Quaternions, 3rd ed. London: Macmillan, 1904.
Nicholson, W. K. Introduction to Abstract Algebra. Boston, MA: PWS-Kent, 1993.
Tait, P. G. An Elementary Treatise on Quaternions, 3rd ed., enl. Cambridge, England: Cambridge University Press, 1890.
Tait, P. G. ``Quaternions.'' Encyclopædia Britannica, 9th ed. ca. 1886.
ftp://ftp.netcom.com/pub/hb/hbaker/quaternion/tait/Encyc-Brit.ps.gz.
© 1996-9 Eric W. Weisstein