The four parameters , , , and describing a finite rotation about an arbitrary axis. The
Euler parameters are defined by
(1) | |||
(2) |
(3) |
Because Euler's Rotation Theorem states that an arbitrary rotation may be described by only three parameters, a
relationship must exist between these four quantities
(4) |
(5) |
(6) |
The Euler parameters may be given in terms of the Euler Angles by
(7) | |||
(8) | |||
(9) | |||
(10) |
Using the Euler parameters, the Rotation Formula becomes
(11) |
(12) |
(13) |
(14) | |||
(15) | |||
(16) | |||
(17) | |||
(18) | |||
(19) | |||
(20) | |||
(21) | |||
(22) |
See also Euler Angles, Quaternion, Rotation Matrix
References
Arfken, G. Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 198-200, 1985.
Goldstein, H. Classical Mechanics, 2nd ed. Reading, MA: Addison-Wesley, 1980.
Landau, L. D. and Lifschitz, E. M. Mechanics, 3rd ed. Oxford, England: Pergamon Press, 1976.
© 1996-9 Eric W. Weisstein