Let denote the number of Primes which are congruent to modulo . Then one might
expect that
References
Bays, C. and Hudson, R. H. ``The Mean Behavior of Primes in Arithmetic Progressions.'' J. Reine Angew. Math. 296, 80-99, 1977.
Bays, C. and Hudson, R. H. ``On the Fluctuations of Littlewood for Primes of the Form .'' Math. Comput.
32, 281-286, 1978.
Bays, C. and Hudson, R. H. ``Numerical and Graphical Description of All Axis Crossing Regions for the Moduli 4 and 8
which Occur Before .'' Internat. J. Math. Math. Sci. 2, 111-119, 1979.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 135-136, 1994.
Hudson, R. H. ``A Common Principle Underlies Riemann's Formula, the Chebyshev Phenomenon, and Other Subtle Effects
in Comparative Prime Number Theory. I.'' J. Reine Angew. Math. 313, 133-150, 1980.
Shanks, D. ``Quadratic Residues and the Distribution of Primes.'' Math. Comput. 13, 272-284, 1959.