Given a Matrix A, its QR-decomposition is of the form
See also Cholesky Decomposition, LU Decomposition, Singular Value Decomposition
References
Householder, A. S. The Numerical Treatment of a Single Non-Linear Equations. New York: McGraw-Hill, 1970.
Nash, J. C. Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation, 2nd ed.
Bristol, England: Adam Hilger, pp. 26-28, 1990.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T. ``QR Decomposition.'' §2.10 in
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 91-95, 1992.
Stewart, G. W. ``A Parallel Implementation of the QR Algorithm.'' Parallel Comput. 5, 187-196, 1987.
ftp://thales.cs.umd.edu/pub/reports/piqra.ps.