info prev up next book cdrom email home

Schwarz Triangle

The Schwarz triangles are Spherical Triangles which, by repeated reflection in their indices, lead to a set of congruent Spherical Triangles covering the Sphere a finite number of times.


Schwarz triangles are specified by triples of numbers $(p, q, r)$. There are four ``families'' of Schwarz triangles, and the largest triangles from each of these families are

\begin{displaymath}
(2\ 2\ n'), ({\textstyle{3\over 2}}\ {\textstyle{3\over 2}}\...
...e{5\over 4}}\ {\textstyle{5\over 4}}\ {\textstyle{5\over 4}}).
\end{displaymath}

The others can be derived from

\begin{displaymath}
(p\ q\ r)=(p\ x\ r_1)+(x\ q\ r_2),
\end{displaymath}

where

\begin{displaymath}
{1\over r_1}+{1\over r_2}={1\over r}
\end{displaymath}

and
$\displaystyle \cos\left({\pi\over x}\right)$ $\textstyle =$ $\displaystyle -\cos\left({\pi\over x'}\right)$  
  $\textstyle =$ $\displaystyle {\cos\left({\pi\over q}\right)\sin\left({\pi\over r_1}\right)-\co...
...er p}\right)\sin\left({\pi\over r_2}\right)\over\sin\left({\pi\over r}\right)}.$  

See also Colunar Triangle, Spherical Triangle


References

Coxeter, H. S. M. Regular Polytopes, 3rd ed. New York: Dover, pp. 112-113 and 296, 1973.

Schwarz, H. A. ``Zur Theorie der hypergeometrischen Reihe.'' J. reine angew. Math. 75, 292-335, 1873.




© 1996-9 Eric W. Weisstein
1999-05-26