info prev up next book cdrom email home

Schwarz Reflection Principle

Let

\begin{displaymath}
g(z)\equiv \sum_{n=0}^\infty (z-z_0)^n {f^{(n)}(z_0)\over n!},
\end{displaymath} (1)

then


\begin{displaymath}
g^*(z) = \left[{\,\sum_{n=0}^\infty (z-z_0)^n {f^{(n)}(z_0)\...
...= \sum_{n=0}^\infty (z^*-{z_0}^*)n {f^{(n)}({z_0}^*)\over n!}.
\end{displaymath} (2)

If $z_0$ is pure real, then $z_0 = {z_0}^*$, so
\begin{displaymath}
g^*(z) = \sum_{n=0}^\infty (z^*-z_0)^n {f^{(n)}(z_0)\over n!} = g(z^*).
\end{displaymath} (3)

Therefore, if a function $f(z)$ is Analytic over some region including the Real Line and $f(z)$ is Real when $z$ is real, then $f^*(z) = f(z^*)$.




© 1996-9 Eric W. Weisstein
1999-05-26