info prev up next book cdrom email home

Steiner's Problem

\begin{figure}\begin{center}\BoxedEPSF{SteinersProblem.epsf}\end{center}\end{figure}

For what value of $x$ is $f(x)=x^{1/x}$ a Maximum? The maximum occurs at $x=e$, where

\begin{displaymath}
f'(x)=x^{-2+1/x}(1-\ln x)=0,
\end{displaymath}

which gives a maximum of

\begin{displaymath}
e^{1/e}=1.444667861\ldots.
\end{displaymath}

The function has an inflection point at $x=0.581933\ldots$, where

\begin{displaymath}
f''(x)=x^{-4+1/x}[1-3x+(\ln x)(2x-2+\ln x)]=0.
\end{displaymath}

See also Fermat's Problem




© 1996-9 Eric W. Weisstein
1999-05-26