A Steiner quadruple system is a Steiner System , where is a -set and is a collection of
-sets of such that every -subset of is contained in exactly one member of . Barrau (1908) established the
uniqueness of ,
The number of nonisomorphic steiner quadruple systems of orders 8, 10, 14, and 16 are 1, 1, 4 (Mendelsohn and Hung 1972), and at least 31,021 (Lindner and Rosa 1976).
See also Steiner System, Steiner Triple System
References
Barrau, J. A. ``On the Combinatory Problem of Steiner.'' K. Akad. Wet. Amsterdam Proc. Sect. Sci. 11, 352-360, 1908.
Bays, S. and de Weck, E. ``Sur les systèmes de quadruples.'' Comment. Math. Helv. 7, 222-241, 1935.
Fitting, F. ``Zyklische Lösungen des Steiner'schen Problems.'' Nieuw. Arch. Wisk. 11, 140-148, 1915.
Hanani, M. ``On Quadruple Systems.'' Canad. J. Math. 12, 145-157, 1960.
Lindner, C. L. and Rosa, A. ``There are at Least 31,021 Nonisomorphic Steiner Quadruple Systems of Order 16.''
Utilitas Math. 10, 61-64, 1976.
Lindner, C. L. and Rosa, A. ``Steiner Quadruple Systems--A Survey.'' Disc. Math. 22, 147-181, 1978.
Mendelsohn, N. S. and Hung, S. H. Y. ``On the Steiner Systems and .'' Utilitas Math. 1, 5-95, 1972.