N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Expanding the Riemann Zeta Function about gives
(1) |
(2) |
(3) |
0 | 0.5772156649 |
1 | |
2 | |
3 | 0.002053834420 |
4 | 0.002325370065 |
5 | 0.0007933238173 |
Briggs (1955-1956) proved that there infinitely many of each Sign. Berndt (1972) gave upper bounds of
(4) |
(5) |
(6) |
A set of constants related to is
(7) |
References
Berndt, B. C. ``On the Hurwitz Zeta-Function.'' Rocky Mountain J. Math. 2, 151-157, 1972.
Bohman, J. and Fröberg, C.-E. ``The Stieltjes Function--Definitions and Properties.'' Math. Comput.
51, 281-289, 1988.
Briggs, W. E. ``Some Constants Associated with the Riemann Zeta-Function.'' Mich. Math. J. 3, 117-121,
1955-1956.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/stltjs/stltjs.html
Hardy, G. H. ``Note on Dr. Vacca's Series for .'' Quart. J. Pure Appl. Math. 43, 215-216,
1912.
Kluyver, J. C. ``On Certain Series of Mr. Hardy.'' Quart. J. Pure Appl. Math. 50, 185-192, 1927.
Knopfmacher, J. ``Generalised Euler Constants.'' Proc. Edinburgh Math. Soc. 21, 25-32, 1978.
Lehmer, D. H. ``The Sum of Like Powers of the Zeros of the Riemann Zeta Function.'' Math. Comput. 50,
265-273, 1988.
Liang, J. J. Y. and Todd, J. ``The Stieltjes Constants.'' J. Res. Nat. Bur. Standards--Math. Sci. 76B,
161-178, 1972.
Sitaramachandrarao, R. ``Maclaurin Coefficients of the Riemann Zeta Function.'' Abstracts Amer. Math. Soc.
7, 280, 1986.
Vacca, G. ``A New Series for the Eulerian Constant.'' Quart. J. Pure Appl. Math. 41, 363-368, 1910.
© 1996-9 Eric W. Weisstein