The Euler-Mascheroni constant is denoted (or sometimes ) and has the numerical value
(1) |
It is not known if this constant is Irrational, let alone Transcendental. However, Conway and Guy (1996) are ``prepared to bet that it is transcendental,'' although they do not expect a proof to be achieved within their lifetimes.
The Euler-Mascheroni constant arises in many integrals
(2) | |||
(3) | |||
(4) |
(5) | |||
(6) | |||
(7) | |||
(8) | |||
(9) |
(10) |
(11) |
Infinite Products involving also arise from the G-Function
with Positive Integer . The cases and give
(12) | |||
(13) |
(14) | |||
(15) | |||
(16) |
The difference between the th convergent in (6) and is given by
(17) |
(18) |
(19) |
(20) |
(21) |
(22) |
The symbol is sometimes also used for
(23) |
Odena (1982-1983) gave the strange approximation
(24) |
(25) | |||
(26) | |||
(27) | |||
(28) |
No quadratically converging algorithm for computing is known (Bailey 1988). 7,000,000 digits of have been computed as of Feb. 1998 (Plouffe).
See also Euler Product, Mertens Theorem, Stieltjes Constants
References
Bailey, D. H. ``Numerical Results on the Transcendence of Constants Involving , , and Euler's Constant.''
Math. Comput. 50, 275-281, 1988.
Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.
Brent, R. P. ``Computation of the Regular Continued Fraction for Euler's Constant.'' Math. Comput. 31, 771-777, 1977.
Brent, R. P. and McMillan, E. M. ``Some New Algorithms for High-Precision Computation of Euler's Constant.''
Math. Comput. 34, 305-312, 1980.
Castellanos, D. ``The Ubiquitous Pi. Part I.'' Math. Mag. 61, 67-98, 1988.
Conway, J. H. and Guy, R. K. ``The Euler-Mascheroni Number.'' In The Book of Numbers. New York: Springer-Verlag,
pp. 260-261, 1996.
de la Vallée Poussin, C.-J. Untitled communication. Annales de la Soc. Sci. Bruxelles 22, 84-90, 1898.
DeTemple, D. W. ``A Quicker Convergence to Euler's Constant.'' Amer. Math. Monthly 100, 468-470, 1993.
Dirichlet, G. L. J. für Math. 18, 273, 1838.
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/euler/euler.html
Flajolet, P. and Vardi, I. ``Zeta Function Expansions of Classical Constants.'' Unpublished manuscript, 1996.
http://pauillac.inria.fr/algo/flajolet/Publications/landau.ps.
Gerst, I. ``Some Series for Euler's Constant.'' Amer. Math. Monthly 76, 273-275, 1969.
Glaisher, J. W. L. ``On the History of Euler's Constant.'' Messenger of Math. 1, 25-30, 1872.
Gradshteyn, I. S. and Ryzhik, I. M. Tables of Integrals, Series, and Products, 5th ed. San Diego, CA:
Academic Press, 1979.
Knuth, D. E. ``Euler's Constant to 1271 Places.'' Math. Comput. 16, 275-281, 1962.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 28, 1983.
Plouffe, S. ``Plouffe's Inverter: Table of Current Records for the Computation
of Constants.'' http://www.lacim.uqam.ca/pi/records.html.
Sloane, N. J. A. Sequences
A033091,
A033092,
A033149,
A046114,
A046114,
A001620/M3755, and
A002852/M0097
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
Sweeney, D. W. ``On the Computation of Euler's Constant.'' Math. Comput. 17, 170-178, 1963.
Vacca, G. ``A New Series for the Eulerian Constant.'' Quart. J. Pure Appl. Math. 41, 363-368, 1910.
Young, R. M. ``Euler's Constant.'' Math. Gaz. 75, 187-190, 1991.
© 1996-9 Eric W. Weisstein