info prev up next book cdrom email home

Stolarsky-Harborth Constant

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Let $b(k)$ be the number of 1s in the Binary expression of $k$. Then the number of Odd Binomial Coefficients ${k\choose j}$ where $0\leq j\leq k$ is $2^{b(k)}$ (Glaisher 1899, Fine 1947). The number of Odd elements in the first $n$ rows of Pascal's Triangle is

\begin{displaymath}
f(n)=\sum_{k=0}^{n-1} 2^{b(k)}.
\end{displaymath} (1)

This function is well approximated by $n^\theta$, where
\begin{displaymath}
\theta\equiv{\ln 3\over\ln 2}=1.58496\ldots.
\end{displaymath} (2)

Stolarsky and Harborth showed that


\begin{displaymath}
0.812556\leq \liminf_{n\to\infty} {f(n)\over n^\theta} < 0.812557 < \limsup_{n\to\infty} {f(n)\over n^\theta}=1.
\end{displaymath} (3)

The value
\begin{displaymath}
SH=\liminf_{n\to\infty} {f(n)\over n^\theta}
\end{displaymath} (4)

is called the Stolarsky-Harborth constant.


References

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/stlrsky/stlrsky.html

Fine, N. J. ``Binomial Coefficients Modulo a Prime.'' Amer. Math. Monthly 54, 589-592, 1947.

Wolfram, S. ``Geometry of Binomial Coefficients.'' Amer. Math. Monthly 91, 566-571, 1984.




© 1996-9 Eric W. Weisstein
1999-05-26