The number of colors Sufficient for Map Coloring on a surface of Genus is
given by the Heawood Conjecture,
See also Chromatic Number, Four-Color Theorem, Heawood Conjecture, Klein Bottle, Map Coloring
References
Gardner, M. ``Mathematical Games: The Celebrated Four-Color Map Problem of Topology.'' Sci. Amer. 203, 218-222, Sep. 1960.
Ringel, G. Map Color Theorem. New York: Springer-Verlag, 1974.
Ringel, G. and Youngs, J. W. T. ``Solution of the Heawood Map-Coloring Problem.'' Proc. Nat. Acad. Sci. USA
60, 438-445, 1968.
Sloane, N. J. A. Sequence
A000934/M3292
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html and Sloane, N. J. A. and Plouffe, S.
The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.
Wagon, S. ``Map Coloring on a Torus.'' §7.5 in Mathematica in Action. New York: W. H. Freeman, pp. 232-237, 1991.