Orthogonal Polynomials which arise in the expansion of a wavefront function for optical systems with
circular pupils. The Odd and Even Zernike polynomials are given by
(1) |
|
(2) |
(3) |
(4) |
(5) |
(6) |
(7) |
The Zernike polynomial is a special case of the Jacobi Polynomial with
(8) |
(9) | |||
(10) | |||
(11) | |||
(12) |
(13) | |
(14) | |
(15) |
(16) |
(17) |
(18) |
Let a ``primary'' aberration be given by
(19) |
(20) |
(21) |
Aberration | |||||
spherical aberration | 0 | 4 | 0 | ||
coma | 0 | 3 | 1 | ||
astigmatism | 0 | 2 | 2 | ||
field curvature | 1 | 2 | 0 | ||
distortion | 1 | 1 | 1 |
See also Jacobi Polynomial
References
Bezdidko, S. N. ``The Use of Zernike Polynomials in Optics.'' Sov. J. Opt. Techn. 41, 425, 1974.
Bhatia, A. B. and Wolf, E. ``On the Circle Polynomials of Zernike and Related Orthogonal Sets.''
Proc. Cambridge Phil. Soc. 50, 40, 1954.
Born, M. and Wolf, E. ``The Diffraction Theory of Aberrations.'' Ch. 9 in
Principles of Optics: Electromagnetic Theory of Propagation, Interference, and Diffraction of Light, 6th ed.
New York: Pergamon Press, pp. 459-490, 1989.
Mahajan, V. N. ``Zernike Circle Polynomials and Optical Aberrations of Systems with Circular Pupils.''
In Engineering and Lab. Notes 17 (Ed. R. R. Shannon), p. S-21, Aug. 1994.
Prata, A. and Rusch, W. V. T. ``Algorithm for Computation of Zernike Polynomials Expansion Coefficients.''
Appl. Opt. 28, 749-754, 1989.
Wang, J. Y. and Silva, D. E. ``Wave-Front Interpretation with Zernike Polynomials.''
Appl. Opt. 19, 1510-1518, 1980.
Zernike, F. ``Beugungstheorie des Schneidenverfahrens und seiner verbesserten Form, der Phasenkontrastmethode.''
Physica 1, 689-704, 1934.
Zhang, S. and Shannon, R. R. ``Catalog of Spot Diagrams.'' Ch. 4 in
Applied Optics and Optical Engineering, Vol. 11. New York: Academic Press, p. 201, 1992.
© 1996-9 Eric W. Weisstein