(1)几个数的算术平均值的绝对值不超过这些数的均方根,即 \[ \left| {\frac{{a_1 + a_2 + \cdots + a_n }}{n}} \right| \le \sqrt {\frac{{a_1 ^2 + a_2 ^2 + \cdots + a_n ^2 }}{n}} \] 等号只当a1=a2=…=an时成立.
(2)几个正数的几何平均值不超过这些数的算术平均值,即 \[ \sqrt[n]{{a_1 a_2 \cdots a_n }} \le \frac{{a_1 + a_2 + \cdots + a_n }}{n} \] 等号只当a1=a2=…=an时成立.
(3)对几个正数的加权几何平均值有 \[ a_1 ^{p_1 } a_2 ^{p_2 } \cdots a_n ^{p_n } \le \left( {\frac{{p_1 a_1 + p_2 a_2 + \cdots + p_n a_n }}{{p_1 + p_2 + p_3 + \cdots + p_n }}} \right)^{p_1 + p_2 + p_3 + \cdots + p_n } \] 等号只当a1=a2=…=an时成立.
(4)当α<0<β< i=""> 时,对正数ai有 \[ \left( {\frac{1}{n}\sum\limits_{i = 1}^n {a_i ^\alpha } } \right)^{\frac{1}{\alpha }} \le \left( {a_1 a_2 \cdots a_n } \right)^{\frac{1}{n}} \le \left( {\frac{1}{n}\sum\limits_{i = 1}^n {a_i ^\beta } } \right)^{\frac{1}{\beta }} \] 等号只当a1=a2=…=an时成立. 0<β<>
设ai, bi (i=1,2,…,n)为任意实数,则 \[ \left( {\sum\limits_{i = 1}^n {a_i b_i } } \right)^2 \le \left( {\sum\limits_{i = 1}^n {a_i ^2 } } \right)\left( {\sum\limits_{i = 1}^n {b_i ^2 } } \right) \] 等号只当 \[ \frac{{a_1 }}{{b_1 }} = \frac{{a_2 }}{{b_2 }} = \cdots = \frac{{a_n }}{{b_n }} \] 时成立.这个不等式表明一个角(取实数值)的余弦值总是小于1的,或者说二矢量内积小于二矢量长度之积.