info prev up next book cdrom email home

Alladi-Grinstead Constant

N.B. A detailed on-line essay by S. Finch was the starting point for this entry.


Let $N(n)$ be the number of ways in which the Factorial $n!$ can be decomposed into $n$ Factors of the form ${p_k}^{b_k}$ arranged in nondecreasing order. Also define

\begin{displaymath}
m(n)\equiv {\rm max}({p_1}^{b_1}),
\end{displaymath} (1)

i.e., $m(n)$ is the Least Prime Factor raised to its appropriate Power in the factorization. Then define
\begin{displaymath}
\alpha(n)\equiv {\ln m(n)\over\ln n}
\end{displaymath} (2)

where $\ln(x)$ is the Natural Logarithm. For instance,
$\displaystyle 9!$ $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 2\cdot 2^2\cdot 5\cdot 7\cdot 3^4$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 5\cdot 7\cdot 2^3\cdot 3^3$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 2\cdot 5\cdot 7\cdot 2^3\cdot 3^2\cdot 3^2$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 3\cdot 2^2\cdot 2^2\cdot 5\cdot 7\cdot 3^3$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 2^2\cdot 2^2\cdot 5\cdot 7\cdot 3^2\cdot 3^2$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 2\cdot 3\cdot 3\cdot 5\cdot 7\cdot 3^2\cdot 2^4$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 3\cdot 3\cdot 2^2\cdot 5\cdot 7\cdot 2^3\cdot 3^2$  
  $\textstyle =$ $\displaystyle 2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\cdot 5\cdot 7\cdot 2^5$  
  $\textstyle =$ $\displaystyle 2\cdot 3\cdot 3\cdot 2^2\cdot 2^2\cdot 2^2\cdot 5\cdot 7\cdot 3^2$  
  $\textstyle =$ $\displaystyle 2\cdot 3\cdot 3\cdot 3\cdot 3\cdot 2^2\cdot 5\cdot 7\cdot 2^4$  
  $\textstyle =$ $\displaystyle 2\cdot 3\cdot 3\cdot 3\cdot 3\cdot 5\cdot 7\cdot 2^3\cdot 2^3$  
  $\textstyle =$ $\displaystyle 3\cdot 3\cdot 3\cdot 3\cdot 2^2\cdot 2^2\cdot 5\cdot 7\cdot 2^3,$ (3)

so
\begin{displaymath}
\alpha(9)={\ln 3\over \ln 9}={\ln 3\over 2\ln 3}={1\over 2}.
\end{displaymath} (4)

For large $n$,
\begin{displaymath}
\lim_{n\to\infty} \alpha(n)=e^{c-1}=0.809394020534\ldots,
\end{displaymath} (5)

where
\begin{displaymath}
c\equiv \sum_{k=2}^\infty {1\over k}\ln\left({k\over k-1}\right).
\end{displaymath} (6)


References

Alladi, K. and Grinstead, C. ``On the Decomposition of $n!$ into Prime Powers.'' J. Number Th. 9, 452-458, 1977.

Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/aldgrns/aldgrns.html

Guy, R. K. ``Factorial $n$ as the Product of $n$ Large Factors.'' §B22 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 79, 1994.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-25