info prev up next book cdrom email home

Bradley's Theorem

Let


\begin{displaymath}
S(\alpha,\beta,m;z)\equiv m\sum_{j=0}^\infty {\Gamma(m+j(z+1...
...amma(m+jz+1)\Gamma(\alpha+\beta+1+j(z+1))}{(\alpha)+j\over j!}
\end{displaymath}

and $\alpha$ be a Negative Integer. Then

\begin{displaymath}
S(\alpha,\beta,m;z)={\Gamma(\beta+1-m)\over\Gamma(\alpha+\beta+1-m)},
\end{displaymath}

where $\Gamma(z)$ is the Gamma Function.


References

Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, pp. 346-348, 1994.

Bradley, D. ``On a Claim by Ramanujan about Certain Hypergeometric Series.'' Proc. Amer. Math. Soc. 121, 1145-1149, 1994.




© 1996-9 Eric W. Weisstein
1999-05-26