info prev up next book cdrom email home

Comma of Pythagoras

The musical interval by which twelve fifths exceed seven octaves,

\begin{displaymath}
{({\textstyle{3\over 2}})^{12}\over 2^7} = {3^{12}\over 2^{19}} = {531441\over 524288} = 1.013643265.
\end{displaymath}

Successive Continued Fraction Convergents to $\log 2/\log(3/2)$ give increasingly close approximations $m/n$ of $m$ fifths by $n$ octaves as 1, 2, 5/3, 12/7, 41/24, 53/31, 306/179, 665/389, ... (Sloane's A005664 and A046102; Jeans 1968, p. 188), shown in bold in the table below. All near-equalities of $m$ fifths and $n$ octaves having

\begin{displaymath}
R\equiv {({\textstyle{3\over 2}})^m\over 2^n} = {3^m\over 2^{m+n}}
\end{displaymath}

with $\vert R-1\vert<0.02$ are given in the following table.


$m$ $n$ Ratio $m$ $n$ Ratio
12 7 1.013643265 265 155 1.010495356
41 24 0.9886025477 294 172 0.9855324037
53 31 1.002090314 306 179 0.9989782832
65 38 1.015762098 318 186 1.012607608
94 55 0.9906690375 347 203 0.9875924759
106 62 1.004184997 359 210 1.001066462
118 69 1.017885359 371 217 1.014724276
147 86 0.9927398469 400 234 0.9896568543
159 93 1.006284059 412 241 1.003159005
188 110 0.9814251419 424 248 1.016845369
200 117 0.994814985 453 265 0.9917255479
212 124 1.008387509 465 272 1.005255922
241 141 0.9834766286 477 279 1.018970895
253 148 0.9968944607 494 289 0.9804224033

See also Comma of Didymus, Diesis, Schisma


References

Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, p. 257, 1995.

Guy, R. K. ``Small Differences Between Powers of 2 and 3.'' §F23 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, p. 261, 1994.

Sloane, N. J. A. Sequences A005664/M1428 and A046102 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' http://www.research.att.com/~njas/sequences/eisonline.html.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26