info prev up next book cdrom email home

Diesis

The musical interval by which an octave exceeds three major thirds,

\begin{displaymath}
{2\over ({\textstyle{5\over 4}})^3} = {2^7\over 5^3} = {128\over 125} = 1.024.
\end{displaymath}

Taking Continued Fraction Convergents of $\log(5/4)/\log(2)$ gives the increasing accurate approximations $m/n$ of $m$ octaves and $n$ major thirds: 1/3, 9/28, 19/59, 47/146, 207/643, 1289/4004, ... (Sloane's A046103 and A046104). Other near equalities of $m$ octaves and $n$ major thirds having

\begin{displaymath}
R\equiv {2^m\over ({\textstyle{5\over 4}})^n} = {2^{m+2n}\over 5^n}
\end{displaymath}

with $\vert R-1\vert<0.02$ are given in the following table.

$m$ $n$ Ratio $m$ $n$ Ratio
9 28 0.9903520314 104 323 1.012011267
10 31 1.01412048 113 351 1.002247414
18 56 0.9807971462 122 379 0.9925777621
19 59 1.004336278 123 382 1.016399628
28 87 0.9946464728 131 407 0.983001403
29 90 1.018517988 132 410 1.006593437
37 115 0.9850501549 141 438 0.9968818549
38 118 1.008691359 150 466 0.9872639701
47 146 0.9989595361 151 469 1.010958305
56 174 0.9893216059 160 497 1.001204611
57 177 1.013065324 169 525 0.9915450208
66 205 1.003291302 170 528 1.015342101
75 233 0.9936115791 178 553 0.9819786256
76 236 1.017458257 179 556 1.005546113
84 261 0.9840252458 188 584 0.9958446353
85 264 1.007641852 189 587 1.019744907
94 292 0.9979201548 197 612 0.9862367575
103 320 0.9882922525 198 615 1.00990644

See also Comma of Didymus, Comma of Pythagoras, Schisma


References

Sloane, N. J. A. A046103 and A046104 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' http://www.research.att.com/~njas/sequences/eisonline.html.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-24