info prev up next book cdrom email home

Confocal Ellipsoidal Coordinates

The confocal ellipsoidal coordinates (called simply ellipsoidal coordinates by Morse and Feshbach 1953) are given by the equations

\begin{displaymath}
{x^2\over a^2+\xi}+{y^2\over b^2+\xi}+{z^2\over c^2+\xi}=1
\end{displaymath} (1)


\begin{displaymath}
{x^2\over a^2+\eta}+{y^2\over b^2+\eta}+{z^2\over c^2+\eta}=1
\end{displaymath} (2)


\begin{displaymath}
{x^2\over a^2+\zeta}+{y^2\over b^2+\zeta}+{z^2\over c^2+\zeta}=1,
\end{displaymath} (3)

where $-c^2<\xi<\infty$, $-b^2<\eta<-c^2$, and $-a^2<\zeta<-b^2$. Surfaces of constant $\xi$ are confocal Ellipsoids, surfaces of constant $\eta$ are one-sheeted Hyperboloids, and surfaces of constant $\zeta$ are two-sheeted Hyperboloids. For every $(x,y,z)$, there is a unique set of ellipsoidal coordinates. However, $(\xi,\eta,\zeta)$ specifies eight points symmetrically located in octants. Solving for $x$, $y$, and $z$ gives
\begin{displaymath}
x^2={(a^2+\xi)(a^2+\eta)(a^2+\zeta)\over (b^2-a^2)(c^2-a^2)}
\end{displaymath} (4)


\begin{displaymath}
y^2={(b^2+\xi)(b^2+\eta)(b^2+\zeta)\over (a^2-b^2)(c^2-b^2)}
\end{displaymath} (5)


\begin{displaymath}
z^2={(c^2+\xi)(c^2+\eta)(c^2+\zeta)\over (a^2-c^2)(b^2-c^2)}.
\end{displaymath} (6)

The Laplacian is
$\nabla^2\Psi=(\eta-\zeta)f(\xi){\partial\over\partial\xi}\left[{f(\xi){\partial\Psi\over\partial\xi}}\right]$
$ +(\zeta-\xi)f(\eta){\partial\over\partial\eta}\left[{f(\eta){\partial\Psi\over...
...tial\over\partial\zeta}\left[{f(\zeta){\partial\Psi\over\partial\zeta}}\right],$

(7)
where
\begin{displaymath}
f(x)\equiv \sqrt{(x+a^2)(x+b^2)(x+c^2)}.
\end{displaymath} (8)

Another definition is
\begin{displaymath}
{x^2\over a^2-\lambda} + {y^2\over b^2-\lambda} + {z^2\over c^2-\lambda} = 1
\end{displaymath} (9)


\begin{displaymath}
{x^2\over a^2-\mu} + {y^2\over b^2-\mu} + {z^2\over c^2-\mu} = 1
\end{displaymath} (10)


\begin{displaymath}
{x^2\over a^2-\nu} + {y^2\over b^2-\nu} + {z^2\over c^2-\nu} = 1,
\end{displaymath} (11)

where
\begin{displaymath}
\lambda < c^2 < \mu < b^2 < \nu < a^2
\end{displaymath} (12)

(Arfken 1970, pp. 117-118). Byerly (1959, p. 251) uses a slightly different definition in which the Greek variables are replaced by their squares, and $a=0$. Equation (9) represents an Ellipsoid, (10) represents a one-sheeted Hyperboloid, and (11) represents a two-sheeted Hyperboloid. In terms of Cartesian Coordinates,
\begin{displaymath}
x^2 = {(a^2-\lambda)(a^2-\mu)(a^2-\nu)\over (a^2-b^2)(a^2-c^2)}
\end{displaymath} (13)


\begin{displaymath}
y^2 = {(b^2-\lambda)(b^2-\mu)(b^2-\nu)\over (b^2-a^2)(b^2-c^2)}
\end{displaymath} (14)


\begin{displaymath}
z^2 = {(c^2-\lambda)(c^2-\mu)(c^2-\nu)\over (c^2-a^2)(c^2-b^2)}.
\end{displaymath} (15)

The Scale Factors are
$\displaystyle {h_\lambda }$ $\textstyle =$ $\displaystyle \sqrt{(\mu-\lambda)(\nu-\lambda)\over 4(a^2-\lambda)(b^2-\lambda) (c^2-\lambda)}$ (16)
$\displaystyle {h_\mu}$ $\textstyle =$ $\displaystyle \sqrt{(\nu-\mu)(\lambda-\mu)\over 4(a^2-\mu)(b^2-\mu)(c^2-\mu)}$ (17)
$\displaystyle {h_\nu}$ $\textstyle =$ $\displaystyle \sqrt{(\lambda-\nu)(\mu-\nu)\over 4(a^2-\nu)(b^2-\nu)(c^2-\nu)}.$ (18)

The Laplacian is


$\displaystyle \nabla^2$ $\textstyle =$ $\displaystyle 2{a^2b^2+a^2c^2+b^2c^2-2\nu(a^2+b^2+c^2)+3\nu^2\over(\mu-\nu)(\nu-\lambda)}{\partial\over\partial\nu}$  
  $\textstyle \phantom{=}$ $\displaystyle +{4(a^2-\nu)(b^2-\nu)(c^2-\nu)\over(\mu-\nu)(\nu-\lambda)}{\partial^2\over\partial\nu^2}\hfill$  
  $\textstyle \phantom{=}$ $\displaystyle +2{a^2b^2+a^2c^2+b^2c^2-2\mu(a^2+b^2+c^2)+3\mu^2\over(\nu-\mu)(\mu-\lambda)}{\partial\over\partial\mu}$  
  $\textstyle \phantom{=}$ $\displaystyle +{4(a^2-\mu)(b^2-\mu)(c^2-\mu)\over(\mu-\lambda)(\nu-\mu)}{\partial^2\over\partial\mu^2}$  
  $\textstyle \phantom{=}$ $\displaystyle +2{-(a^2b^2+a^2c^2+b^2c^2)+2\lambda(a^2+b^2+c^2)-3\lambda^2\over(\mu-\lambda)(\nu-\lambda)}{\partial\over\partial\lambda}$  
  $\textstyle \phantom{=}$ $\displaystyle +{4(a^2-\lambda)(b^2-\lambda)(c^2-\lambda)\over(\mu-\lambda)(\nu-\lambda)}{\partial^2\over\partial\lambda^2}.$ (19)

Using the Notation of Byerly (1959, pp. 252-253), this can be reduced to

\begin{displaymath}
\nabla^2=(\mu^2-\nu^2){\partial^2\over\partial\alpha^2}+(\la...
...\beta^2}
+(\lambda^2-\mu^2){\partial^2\over\partial\gamma^2},
\end{displaymath} (20)

where
$\displaystyle \alpha$ $\textstyle =$ $\displaystyle c\int_c^\lambda {d\lambda\over\sqrt{(\lambda^2-b^2)(\lambda^2-c^2)}}$  
  $\textstyle =$ $\displaystyle F\left({{b\over c}, {\pi\over 2}}\right)-F\left({{b\over c},\sin^{-1}\left({c\over\lambda}\right)}\right)$ (21)
$\displaystyle \beta$ $\textstyle =$ $\displaystyle c\int_b^\mu {d\mu\over\sqrt{(c^2-\mu^2)(\mu^2-b^2)}}$  
  $\textstyle =$ $\displaystyle F\left[{\sqrt{1-{b^2\over c^2}}, \sin^{-1}\left({\sqrt{1-{b^2\over\mu^2}\over 1-{b^2\over c^2}}\,}\right)}\right]$ (22)
$\displaystyle \gamma$ $\textstyle =$ $\displaystyle c\int_0^\nu{d\nu\over\sqrt{(b^2-\nu^2)(c^2-\nu^2)}}$  
  $\textstyle =$ $\displaystyle F\left({{b\over c}, \sin^{-1}\left({\nu\over b}\right)}\right).$ (23)

Here, $F$ is an Elliptic Integral of the First Kind. In terms of $\alpha$, $\beta$, and $\gamma$,
$\displaystyle \lambda$ $\textstyle =$ $\displaystyle c\mathop{\rm dc}\nolimits \left({\alpha, {b\over c}}\right)$ (24)
$\displaystyle \mu$ $\textstyle =$ $\displaystyle b\mathop{\rm nd}\nolimits \left({\beta,\sqrt{1-{b^2\over c^2}}}\right)$ (25)
$\displaystyle \nu$ $\textstyle =$ $\displaystyle b\mathop{\rm sn}\nolimits \left({\gamma,{b\over c}}\right),$ (26)

where $\mathop{\rm dc}\nolimits $, $\mathop{\rm nd}\nolimits $ and $\mathop{\rm sn}\nolimits $ are Jacobi Elliptic Functions. The Helmholtz Differential Equation is separable in confocal ellipsoidal coordinates.

See also Helmholtz Differential Equation--Confocal Ellipsoidal Coordinates


References

Abramowitz, M. and Stegun, C. A. (Eds.). ``Definition of Elliptical Coordinates.'' §21.1 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, p. 752, 1972.

Arfken, G. ``Confocal Ellipsoidal Coordinates $(\xi_1, \xi_2, \xi_3)$.'' §2.15 in Mathematical Methods for Physicists, 2nd ed. New York: Academic Press, pp. 117-118, 1970.

Byerly, W. E. An Elementary Treatise on Fourier's Series, and Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics. New York: Dover, 1959.

Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 663, 1953.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26