The Jacobi elliptic functions are standard forms of Elliptic Functions. The three basic
functions are denoted
,
, and
, where is known as the Modulus. In terms of Theta Functions,
(1) | |||
(2) | |||
(3) |
(4) |
The Jacobi elliptic functions are periodic in and as
(5) |
(6) |
(7) |
The
,
, and
functions may also be defined as solutions to the differential equations
(8) |
(9) |
(10) |
The standard Jacobi elliptic functions satisfy the identities
(11) | |||
(12) | |||
(13) | |||
(14) |
(15) | |||
(16) | |||
(17) | |||
(18) | |||
(19) |
In terms of integrals,
(20) | |||
(21) | |||
(22) | |||
(23) | |||
(24) | |||
(25) | |||
(26) | |||
(27) | |||
(28) | |||
(29) | |||
(30) | |||
(31) |
Jacobi elliptic functions addition formulas include
(32) | |||
(33) | |||
(34) |
(35) | |||
(36) | |||
(37) |
(38) | |||
(39) | |||
(40) |
For Complex arguments,
(41) |
(42) |
(43) |
Derivatives of the Jacobi elliptic functions include
(44) | |||
(45) | |||
(46) |
Double-period formulas involving the Jacobi elliptic functions include
(47) | |||
(48) | |||
(49) |
Half-period formulas involving the Jacobi elliptic functions include
(50) | |||
(51) | |||
(52) |
Squared formulas include
(53) | |||
(54) | |||
(55) |
See also Amplitude, Elliptic Function, Jacobi's Imaginary Transformation, Theta Function, Weierstraß Elliptic Function
References
Abramowitz, M. and Stegun, C. A. (Eds.). ``Jacobian Elliptic Functions and Theta Functions.'' Ch. 16 in
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing.
New York: Dover, pp. 567-581, 1972.
Bellman, R. E. A Brief Introduction to Theta Functions. New York: Holt, Rinehart and Winston, 1961.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, p. 433, 1953.
Press, W. H.; Flannery, B. P.; Teukolsky, S. A.; and Vetterling, W. T.
``Elliptic Integrals and Jacobi Elliptic Functions.'' §6.11 in
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 2nd ed. Cambridge, England:
Cambridge University Press, pp. 254-263, 1992.
Spanier, J. and Oldham, K. B. ``The Jacobian Elliptic Functions.''
Ch. 63 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 635-652, 1987.
Whittaker, E. T. and Watson, G. N. A Course in Modern Analysis, 4th ed. Cambridge, England:
Cambridge University Press, 1990.
© 1996-9 Eric W. Weisstein