A doubly periodic function with periods and such that
(1) |
The elliptic functions are inversions of the Elliptic Integrals. The two standard forms of these
functions are known as Jacobi Elliptic Functions and Weierstraß Elliptic Functions. Jacobi Elliptic Functions arise as solutions to differential equations of the form
(2) |
(3) |
See also Elliptic Curve, Elliptic Integral, Jacobi Elliptic Functions, Liouville's Elliptic Function Theorem, Modular Form, Modular Function, Neville Theta Function, Theta Function, Weierstraß Elliptic Functions
References
Akhiezer, N. I. Elements of the Theory of Elliptic Functions. Providence, RI: Amer. Math. Soc., 1990.
Bellman, R. E. A Brief Introduction to Theta Functions. New York: Holt, Rinehart and Winston, 1961.
Borwein, J. M. and Borwein, P. B. Pi & the AGM: A Study in Analytic Number Theory and Computational Complexity. New York: Wiley, 1987.
Bowman, F. Introduction to Elliptic Functions, with Applications. New York: Dover, 1961.
Byrd, P. F. and Friedman, M. D. Handbook of Elliptic Integrals for Engineers and Scientists, 2nd ed., rev. Berlin: Springer-Verlag, 1971.
Cayley, A. An Elementary Treatise on Elliptic Functions, 2nd ed. London: G. Bell, 1895.
Chandrasekharan, K. Elliptic Functions. Berlin: Springer-Verlag, 1985.
Du Val, P. Elliptic Functions and Elliptic Curves. Cambridge, England: Cambridge University Press, 1973.
Dutta, M. and Debnath, L. Elements of the Theory of Elliptic and Associated Functions with Applications. Calcutta, India: World Press, 1965.
Eagle, A. The Elliptic Functions as They Should Be: An Account, with Applications, of the Functions in a New Canonical Form. Cambridge, England: Galloway and Porter, 1958.
Greenhill, A. G. The Applications of Elliptic Functions. London: Macmillan, 1892.
Hancock, H. Lectures on the Theory of Elliptic Functions. New York: Wiley, 1910.
Jacobi, C. G. J. Fundamentia Nova Theoriae Functionum Ellipticarum. Regiomonti, Sumtibus fratrum Borntraeger, 1829.
King, L. V. On the Direct Numerical Calculation of Elliptic Functions and Integrals. Cambridge, England: Cambridge University Press, 1924.
Lang, S. Elliptic Functions, 2nd ed. New York: Springer-Verlag, 1987.
Lawden, D. F. Elliptic Functions and Applications. New York: Springer Verlag, 1989.
Morse, P. M. and Feshbach, H. Methods of Theoretical Physics, Part I. New York: McGraw-Hill, pp. 427 and 433-434, 1953.
Murty, M. R. (Ed.). Theta Functions. Providence, RI: Amer. Math. Soc., 1993.
Neville, E. H. Jacobian Elliptic Functions, 2nd ed. Oxford, England: Clarendon Press, 1951.
Petkovsek, M.; Wilf, H. S.; and Zeilberger, D. ``Elliptic Function Identities.'' §1.8 in A=B. Wellesley, MA: A. K. Peters, pp. 13-15, 1996.
Whittaker, E. T. and Watson, G. N. Chs. 20-22 in A Course of Modern Analysis, 4th ed. Cambridge, England: University Press, 1943.
© 1996-9 Eric W. Weisstein