A function is said to be modular (or ``elliptic modular'') if it satisfies:
An important property of modular functions is that if is modular and not identically 0, then the number of zeros of is equal to the number of poles of in the Closure of the fundamental region (Apostol 1997, p. 34).
See also Elliptic Function, Modular Form
References
Modular Functions
Apostol, T. M. Modular Functions and Dirichlet Series in Number Theory. New York: Springer-Verlag, 1976.
Borwein, J. M. and Borwein, P. B. Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity.
New York: Wiley, 1987.
Rankin, R. A. Modular Forms and Functions. Cambridge, England: Cambridge University Press, 1977.
Schoeneberg, B. Elliptic Modular Functions: An Introduction. Berlin: New York: Springer-Verlag, 1974.