The 2-1 equation
(1) |
(2) |
(3) | |||
(4) | |||
(5) | |||
(6) | |||
(7) | |||
(8) | |||
(9) | |||
(10) | |||
(11) | |||
(12) |
Ramanujan gave a general solution to the 2-2 equation as
(13) |
(14) |
(15) |
Hardy and Wright (1979, Theorem 412) prove that there are numbers that are expressible as the sum of two cubes in
ways for any (Guy 1994, pp. 140-141). The proof is constructive, providing a method for computing such numbers:
given Rationals Numbers and , compute
(16) | |||
(17) | |||
(18) | |||
(19) |
(20) |
(21) |
(22) | |||
(23) |
The numbers representable in three ways as a sum of two cubes (a 2-2-2 equation) are
(24) | |||
(25) | |||
(26) | |||
(27) | |||
(28) |
(29) |
(30) | |
(31) | |
(32) | |
(33) | |
(34) | |
(35) |
(36) |
The first rational solution to the 3-1 equation
(37) |
(38) | |||
(39) |
(40) | |||
(41) | |||
(42) | |||
(43) | |||
(44) | |||
(45) | |||
(46) |
4-1 equations include
(47) | |||
(48) |
(49) |
5-1 equations
(50) | |||
(51) |
(52) |
(53) |
Euler gave the general solution to
(54) |
(55) | |||
(56) | |||
(57) |
See also Cannonball Problem, Hardy-Ramanujan Number, Super-3 Number, Taxicab Number, Trimorphic Number
References
Beeler, M.; Gosper, R. W.; and Schroeppel, R. Item 58 in HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239,
Feb. 1972.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.
Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Amer. Math. Monthly 100, 645-656, 1993.
Binet, J. P. M. ``Note sur une question relative à la théorie des nombres.'' C. R. Acad. Sci. (Paris) 12, 248-250, 1841.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1966.
Guy, R. K. ``Sums of Like Powers. Euler's Conjecture.'' §D1 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144, 1994.
Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 68,
1959.
Hardy, G. H. and Wright, E. M. An Introduction to the Theory of Numbers, 5th ed. Oxford, England: Clarendon Press, 1979.
Madachy, J. S. Madachy's Mathematical Recreations. New York: Dover, 1979.
Moreau, C. ``Plus petit nombre égal à la somme de deux cubes de deux façons.'' L'Intermediaire Math. 5, 66, 1898.
Schwering, K. ``Vereinfachte Lösungen des Eulerschen Aufgabe:
.'' Arch. Math. Phys. 2, 280-284, 1902.
Shanks, D. Solved and Unsolved Problems in Number Theory, 4th ed. New York: Chelsea, p. 157, 1993.
Sloane, N. J. A.
A001235 and
A003825
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
Wilson, D. Personal communication, Apr. 17, 1997.
© 1996-9 Eric W. Weisstein