Call an equation involving quartics - if a sum of quartics is equal to a sum of fourth Powers. The 2-1 equation
(1) |
(2) |
Parametric solutions to the 2-2 equation
(3) |
(4) | |||
(5) | |||
(6) | |||
(7) | |||
(8) | |||
(9) | |||
(10) | |||
(11) | |||
(12) |
(13) | |||
(14) | |||
(15) | |||
(16) |
(17) | |||
(18) | |||
(19) | |||
(20) |
In 1772, Euler proposed that the 3-1 equation
(21) |
(22) |
(23) |
(24) |
In contrast, there are many solutions to the 3-1 equation
(25) |
Parametric solutions to the 3-2 equation
(26) |
(27) |
Ramanujan gave the 3-3 equations
(28) | |||
(29) | |||
(30) |
Ramanujan also gave the general expression
(31) |
The 4-1 equation
(32) |
(33) | |||
(34) | |||
(35) | |||
(36) | |||
(37) | |||
(38) | |||
(39) | |||
(40) | |||
(41) | |||
(42) | |||
(43) | |||
(44) | |||
(45) | |||
(46) | |||
(47) | |||
(48) | |||
(49) | |||
(50) | |||
(51) | |||
(52) | |||
(53) | |||
(54) | |||
(55) |
Ramanujan gave the 4-2 equation
(56) |
(57) | |||
(58) | |||
(59) |
There are an infinite number of solutions to the 5-1 equation
(60) |
(61) | |||
(62) | |||
(63) | |||
(64) | |||
(65) | |||
(66) | |||
(67) | |||
(68) |
(69) |
|
(70) |
Ramanujan gave
(71) |
(72) |
(73) |
(74) |
(75) |
(76) |
(77) |
V. Kyrtatas noticed that , , , , , and satisfy
(78) |
The first few numbers which are a sum of two or more fourth Powers ( equations) are 353, 651, 2487,
2501, 2829, ... (Sloane's A003294). The only number of the form
(79) |
See also Bhargava's Theorem, Ford's Theorem
References
Barbette, E. Les sommes de -iémes puissances distinctes égales à une p-iéme puissance.
Doctoral Dissertation, Liege, Belgium. Paris: Gauthier-Villars, 1910.
Beiler, A. H. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. New York: Dover, 1966.
Berndt, B. C. Ramanujan's Notebooks, Part IV. New York: Springer-Verlag, 1994.
Berndt, B. C. and Bhargava, S. ``Ramanujan--For Lowbrows.'' Am. Math. Monthly 100, 645-656, 1993.
Bhargava, S. ``On a Family of Ramanujan's Formulas for Sums of Fourth Powers.'' Ganita 43, 63-67, 1992.
Brudno, S. ``A Further Example of
.'' Proc. Cambridge Phil. Soc. 60, 1027-1028, 1964.
Dickson, L. E. History of the Theory of Numbers, Vol. 2: Diophantine Analysis. New York: Chelsea, 1966.
Euler, L. Nova Acta Acad. Petrop. as annos 1795-1796 13, 45, 1802.
Fauquembergue, E. L'intermédiaire des Math. 5, 33, 1898.
Ferrari, F. L'intermédiaire des Math. 20, 105-106, 1913.
Guy, R. K. ``Sums of Like Powers. Euler's Conjecture'' and ``Some Quartic Equations.'' §D1 and D23 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 139-144 and 192-193, 1994.
Haldeman, C. B. ``On Biquadrate Numbers.'' Math. Mag. 2, 285-296, 1904.
Hardy, G. H. and Wright, E. M. §13.7 in An Introduction to the Theory of Numbers, 5th ed.
Oxford, England: Clarendon Press, 1979.
Hirschhorn, M. D. ``Two or Three Identities of Ramanujan.'' Amer. Math. Monthly 105, 52-55, 1998.
Lander, L. J.; Parkin, T. R.; and Selfridge, J. L. ``A Survey of Equal Sums of Like Powers.'' Math. Comput. 21, 446-459, 1967.
Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 56, 1983.
Leech, J. ``Some Solutions of Diophantine Equations.'' Proc. Cambridge Phil. Soc. 53, 778-780, 1957.
Leech, J. ``On
.'' Proc. Cambridge Phil. Soc. 54, 554-555, 1958.
Martin, A. ``About Biquadrate Numbers whose Sum is a Biquadrate.'' Math. Mag. 2, 173-184, 1896.
Martin, A. ``About Biquadrate Numbers whose Sum is a Biquadrate--II.'' Math. Mag. 2, 325-352, 1904.
Norrie, R. University of St. Andrews 500th Anniversary Memorial Volume. Edinburgh, Scotland: pp. 87-89, 1911.
Patterson, J. O. ``A Note on the Diophantine Problem of Finding Four Biquadrates whose Sum is a Biquadrate.''
Bull. Amer. Math. Soc. 48, 736-737, 1942.
Ramanujan, S. Notebooks. New York: Springer-Verlag, pp. 385-386, 1987.
Richmond, H. W. ``On Integers Which Satisfy the Equation
.'' Trans. Cambridge Phil. Soc. 22,
389-403, 1920.
Sloane, N. J. A.
A003824,
A018786, and
A003294/M5446
in ``An On-Line Version of the Encyclopedia of Integer Sequences.''
http://www.research.att.com/~njas/sequences/eisonline.html.
Ward, M. ``Euler's Problem on Sums of Three Fourth Powers.'' Duke Math. J. 15, 827-837, 1948.
© 1996-9 Eric W. Weisstein