The numbers , where
Dörrie (1965) uses the alternative notation
(1) | |||
(2) |
(3) | |||
(4) | |||
(5) | |||
(6) | |||
(7) | |||
(8) |
(9) |
The analog of Fermat's Theorem for Eisenstein integers is that a Prime Number can be written in the
form
See also Eisenstein Prime, Eisenstein Unit, Gaussian Integer, Integer
References
Conway, J. H. and Guy, R. K. The Book of Numbers. New York: Springer-Verlag, pp. 220-223, 1996.
Cox, D. A. §4A in Primes of the Form : Fermat, Class Field Theory and Complex Multiplication.
New York: Wiley, 1989.
Dörrie, H. ``The Fermat-Gauss Impossibility Theorem.'' §21 in
100 Great Problems of Elementary Mathematics: Their History and Solutions. New York: Dover, pp. 96-104, 1965.
Guy, R. K. ``Gaussian Primes. Eisenstein-Jacobi Primes.'' §A16 in
Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 33-36, 1994.
Riesel, H. Appendix 4 in Prime Numbers and Computer Methods for Factorization, 2nd ed. Boston, MA: Birkhäuser, 1994.
Wagon, S. ``Eisenstein Primes.'' Mathematica in Action. New York: W. H. Freeman, pp. 278-279, 1991.
© 1996-9 Eric W. Weisstein