info prev up next book cdrom email home

Factorial Sum

Sums with unity Numerator and Factorials in the Denominator which can be expressed analytically include


$\displaystyle \sum_{i=1}^n {1\over (n+i-k)!(n-i)!}$ $\textstyle =$ $\displaystyle {{}_2F_1(1,-n;1+n-k;-1)-1\over\Gamma(1+n)\Gamma(1+n-k)}$ (1)
$\displaystyle \sum_{i=1}^n {1\over (n+i-1)!(n-i)!}$ $\textstyle =$ $\displaystyle {n\sqrt{\pi}\over 2\Gamma({\textstyle{1\over 2}}+n)\Gamma(1+n)}$ (2)
$\displaystyle \sum_{i=1}^n {1\over (n+i)!(n-i)!}$ $\textstyle =$ $\displaystyle {\sqrt{\pi}\over 2\Gamma({\textstyle{1\over 2}}+n)\Gamma(1+n)}-{1\over 2\Gamma^2(1+n)}$ (3)
$\displaystyle \sum_{i=1}^n {1\over (n+i+1)!(n-i)!}$ $\textstyle =$ $\displaystyle {\sqrt{\pi}\over 2\Gamma({\textstyle{3\over 2}}+n)\Gamma(1+n)}-{1\over 2\Gamma(1+n)\Gamma(2+n)},$ (4)

where ${}_2F_1(a,b;c;z)$ is a Hypergeometric Function and $\Gamma(z)$ is a Gamma Function.


Sums with $i$ in the Numerator having analytic solutions include


$\displaystyle \sum_{i=1}^n {i\over (n+i-k)!(n-i)!}$ $\textstyle =$ $\displaystyle {n\,{}_2F_1(2,1-n;2-k+n;-1)\over (1-k+n)\Gamma(1+n)\Gamma(1-k+n)}$ (5)
$\displaystyle \sum_{i=1}^n {i\over (n+i-1)!(n-i)!}$ $\textstyle =$ $\displaystyle {1\over 2\Gamma(n)} \left[{{\sqrt{\pi}\over 2\Gamma({\textstyle{1\over 2}}+n)}+{n\over\Gamma(1+n)}}\right]$ (6)
$\displaystyle \sum_{i=1}^n {i\over (n+i)!(n-i)!}$ $\textstyle =$ $\displaystyle {n\over 2\Gamma^2(1+n)}$ (7)
$\displaystyle \sum_{i=1}^n {i\over (n+i+1)!(n-i)!}$ $\textstyle =$ $\displaystyle {1\over 2\Gamma(1+n)}\left[{{1\over\Gamma(2+n)}-{(n^2+3n+2)\sqrt{\pi}\over 2\Gamma({\textstyle{3\over 2}}+n)}\,}\right].$ (8)

A sum with $i^2$ in the Numerator is

$\sum_{i=1}^n {i^2\over (n+i-k)!(n-i)!}$
$ = {n\over (1-k+n)(2-k+n)\Gamma(1+n)\Gamma(1-k+n)} [(2-k+n)\,{}_2F_1(2,1-n;2-k+n;-1)$
$ +2(n-1)\,{}_2F_1(3,2-n;3-k+n;-1)],\quad$ (9)
where ${}_2F_1(a,b;c;z)$ is the Hypergeometric Function.


Sums of factorial Powers include

\begin{displaymath}
\sum_{n=0}^\infty {(n!)^2\over(2n)!}={4\over 3}+{2\pi\over 9\sqrt{3}}
\end{displaymath} (10)


\begin{displaymath}
\sum_{n=0}^\infty {(n!)^3\over(3n)!}=\int_0^1 [P(t)+Q(t)\cos^{-1} R(t)]\,dt,
\end{displaymath} (11)

where
$\displaystyle P(t)$ $\textstyle =$ $\displaystyle {2(8+7t^2-7t^3)\over(4-t^2+t^3)^2}$ (12)
$\displaystyle Q(t)$ $\textstyle =$ $\displaystyle {4t(1-t)(5+t^2-t^3)\over (4-t^2+t^3)^2\sqrt{(1-t)(4-t^2+t^3)}}$ (13)
$\displaystyle R(t)$ $\textstyle =$ $\displaystyle 1-{\textstyle{1\over 2}}(t^2-t^3)$ (14)

(Beeler et al. 1972, Item 116).


References

Beeler, M.; Gosper, R. W.; and Schroeppel, R. HAKMEM. Cambridge, MA: MIT Artificial Intelligence Laboratory, Memo AIM-239, Feb. 1972.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26