info prev up next book cdrom email home

Fibonacci Hyperbolic Sine

Let

\begin{displaymath}
\psi\equiv 1+\phi={\textstyle{1\over 2}}(3+\sqrt{5}\,)\approx 2.618034
\end{displaymath} (1)

where $\phi$ is the Golden Ratio, and
\begin{displaymath}
\alpha=\ln\phi\approx 0.4812118.
\end{displaymath} (2)

Then define
$\displaystyle \mathop{\rm sFh}(x)$ $\textstyle \equiv$ $\displaystyle {\psi^x-\psi^{-x}\over\sqrt{5}}$ (3)
  $\textstyle =$ $\displaystyle {\phi^{2x}-\phi^{-2x}\over\sqrt{5}}$ (4)
  $\textstyle =$ $\displaystyle {2\over\sqrt{5}}\sinh[2x\alpha].$ (5)

For $n\in\Bbb{Z}$, $\mathop{\rm sFh}(n)=F_{2n}$ where $F_n$ is a Fibonacci Number. The function satisfies
\begin{displaymath}
\mathop{\rm sFh}(-x)=-\mathop{\rm sFh}(x).
\end{displaymath} (6)


References

Trzaska, Z. W. ``On Fibonacci Hyperbolic Trigonometry and Modified Numerical Triangles.'' Fib. Quart. 34, 129-138, 1996.




© 1996-9 Eric W. Weisstein
1999-05-26