info prev up next book cdrom email home

Finite Group Z4

\begin{figure}\begin{center}\BoxedEPSF{Z4.epsf}\end{center}\end{figure}

One of the two groups of Order 4. Like $Z_2\otimes Z_2$, it is Abelian, but unlike $Z_2\otimes Z_2$, it is a Cyclic. Examples include the Point Groups $C_4$ and $S_4$ and the Modulo Multiplication Groups $M_5$ and $M_{10}$. Elements $A_i$ of the group satisfy ${A_i}^4=1$, where 1 is the Identity Element, and two of the elements satisfy ${A_i}^2=1$.


The Cycle Graph is shown above. The Multiplication Table for this group may be written in three equivalent ways--denoted here by $Z_4^{(1)}$, $Z_4^{(2)}$, and $Z_4^{(3)}$--by permuting the symbols used for the group elements.

$Z_4^{(1)}$ 1 $A$ $B$ $C$
1 1 $A$ $B$ $C$
$A$ $A$ $B$ $C$ 1
$B$ $B$ $C$ 1 $A$
$C$ $C$ 1 $A$ $B$


The Multiplication Table for $Z_4^{(2)}$ is obtained from $Z_4^{(1)}$ by interchanging $A$ and $B$.

${\mathcal Z}_4^{(2)}$ 1 $A$ $B$ $C$
1 1 $A$ $B$ $C$
$A$ $A$ 1 $C$ $B$
$B$ $B$ $C$ $A$ 1
$C$ $C$ $B$ 1 $A$

The Multiplication Table for $Z_4^{(3)}$ is obtained from $Z_4^{(1)}$ by interchanging $A$ and $C$.

$Z_4^{(3)}$ 1 $A$ $B$ $C$
1 1 $A$ $B$ $C$
$A$ $A$ $C$ 1 $B$
$B$ $B$ 1 $C$ $A$
$C$ $C$ $B$ $A$ 1


The Conjugacy Classes of $Z_4$ are $\{1\}$, $\{A\}$,

$\displaystyle A^{-1}AA$ $\textstyle =$ $\displaystyle A$ (1)
$\displaystyle B^{-1}AB$ $\textstyle =$ $\displaystyle A$ (2)
$\displaystyle C^{-1}AC$ $\textstyle =$ $\displaystyle A,$ (3)

$\{B\}$,
$\displaystyle A^{-1}BA$ $\textstyle =$ $\displaystyle B$ (4)
$\displaystyle B^{-1}BB$ $\textstyle =$ $\displaystyle B$ (5)
$\displaystyle C^{-1}BC$ $\textstyle =$ $\displaystyle B,$ (6)

and $\{C\}$.


The group may be given a reducible representation using Complex Numbers

$\displaystyle 1$ $\textstyle =$ $\displaystyle 1$ (7)
$\displaystyle A$ $\textstyle =$ $\displaystyle i$ (8)
$\displaystyle B$ $\textstyle =$ $\displaystyle -1$ (9)
$\displaystyle C$ $\textstyle =$ $\displaystyle -i,$ (10)

or Real Matrices
$\displaystyle 1$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}1 & 0 \\  0 & 1 \end{array}\right]$ (11)
$\displaystyle A$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}0 & -1 \\  1 & 0 \end{array}\right]$ (12)
$\displaystyle B$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}-1 & 0 \\  0 & -1 \end{array}\right]$ (13)
$\displaystyle C$ $\textstyle =$ $\displaystyle \left[\begin{array}{cc}0 & 1 \\  -1 & 0 \end{array}\right].$ (14)

See also Finite Group Z2Z2



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26