info prev up next book cdrom email home

Great Rhombicuboctahedron (Archimedean)

\begin{figure}\begin{center}\BoxedEPSF{Great_Rhombicuboct_net.epsf}\end{center}\end{figure}

An Archimedean Solid sometimes (improperly) called the Truncated Cuboctahedron and also called the Rhombitruncated Cuboctahedron. Its Dual is the Disdyakis Dodecahedron, also called the Hexakis Octahedron. It has Schläfli Symbol t $\left\{{3\atop 4}\right\}$. It is also Uniform Polyhedron $U_{11}$ and has Wythoff Symbol $2\,3\,4\,\vert$. Its faces are $8\{6\}+12\{4\}+6\{8\}$. The Small Cubicuboctahedron is a Faceted version. The Inradius, Midradius, and Circumradius for unit edge length are

$\displaystyle r$ $\textstyle =$ $\displaystyle {\textstyle{3\over 97}}(14+\sqrt{2}\,)\sqrt{13+6\sqrt{2}}\approx 2.20974$  
$\displaystyle \rho$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\sqrt{12+6\sqrt{2}}\approx 2.26303$  
$\displaystyle R$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\sqrt{13+6\sqrt{2}}\approx 2.31761.$  

Additional quantities are
$\displaystyle t$ $\textstyle =$ $\displaystyle \tan({\textstyle{1\over 8}}\pi)=\sqrt{2}\,-1$  
$\displaystyle l$ $\textstyle =$ $\displaystyle 2t=2(\sqrt{2}\,-1)$  
$\displaystyle h$ $\textstyle =$ $\displaystyle 1+l\sin({\textstyle{1\over 4}}\pi) = 3-\sqrt{2}.$  

See also Small Rhombicuboctahedron, Great Truncated Cuboctahedron


References

Ball, W. W. R. and Coxeter, H. S. M. Mathematical Recreations and Essays, 13th ed. New York: Dover, p. 138, 1987.




© 1996-9 Eric W. Weisstein
1999-05-25