info prev up next book cdrom email home

Hexagonal Number

\begin{figure}\begin{center}\BoxedEPSF{HexagonalNumber.epsf scaled 600}\end{center}\end{figure}

A Figurate Number and 6-Polygonal Number of the form $n(2n-1)$. The first few are 1, 6, 15, 28, 45, ... (Sloane's A000384). The Generating Function of the hexagonal numbers


Every hexagonal number is a Triangular Number since

r(2r-1)={\textstyle{1\over 2}}(2r-1)[(2r-1)+1].

In 1830, Legendre (1979) proved that every number larger than 1791 is a sum of four hexagonal numbers, and Duke and Schulze-Pillot (1990) improved this to three hexagonal numbers for every sufficiently large integer. The numbers 11 and 26 can only be represented as a sum using the maximum possible of six hexagonal numbers:
$\displaystyle 11$ $\textstyle =$ $\displaystyle 1+1+1+1+1+6$  
$\displaystyle 26$ $\textstyle =$ $\displaystyle 1+1+6+6+6+6.$  

See also Figurate Number, Hex Number, Triangular Number


Duke, W. and Schulze-Pillot, R. ``Representations of Integers by Positive Ternary Quadratic Forms and Equidistribution of Lattice Points on Ellipsoids.'' Invent. Math. 99, 49-57, 1990.

Guy, R. K. ``Sums of Squares.'' §C20 in Unsolved Problems in Number Theory, 2nd ed. New York: Springer-Verlag, pp. 136-138, 1994.

Legendre, A.-M. Théorie des nombres, 4th ed., 2 vols. Paris: A. Blanchard, 1979.

Sloane, N. J. A. Sequence A000384/M4108 in ``An On-Line Version of the Encyclopedia of Integer Sequences.'' and Sloane, N. J. A. and Plouffe, S. The Encyclopedia of Integer Sequences. San Diego: Academic Press, 1995.

© 1996-9 Eric W. Weisstein