info prev up next book cdrom email home

Hyperbolic Cotangent

\begin{figure}\begin{center}\BoxedEPSF{Coth.epsf}\end{center}\end{figure}

\begin{figure}\begin{center}\BoxedEPSF{CothReIm.epsf scaled 700}\end{center}\end{figure}

The hyperbolic cotangent is defined as

\begin{displaymath}
\coth x\equiv {e^x+e^{-x}\over e^x-e^{-x}} = {e^{2x}+1\over e^{2x}-1}.
\end{displaymath}

Its Laurent Series is

\begin{displaymath}
\coth x = {1\over x}+{\textstyle{1\over 3}} x-{\textstyle{1\over 45}} x^3+\ldots.
\end{displaymath}

See also Bernoulli Number, Bipolar Coordinates, Bipolar Cylindrical Coordinates, Cotangent, Fibonacci Hyperbolic Cotangent, Hyperbolic Tangent, Laplace's Equation--Toroidal Coordinates, Lebesgue Constants (Fourier Series), Prolate Spheroidal Coordinates, Surface of Revolution, Toroidal Coordinates, Toroidal Function


References

Abramowitz, M. and Stegun, C. A. (Eds.). ``Hyperbolic Functions.'' §4.5 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 83-86, 1972.

Spanier, J. and Oldham, K. B. ``The Hyperbolic Tangent $\tanh(x)$ and Cotangent $\coth(x)$ Functions.'' Ch. 30 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 279-284, 1987.




© 1996-9 Eric W. Weisstein
1999-05-25