N.B. A detailed on-line essay by S. Finch was the starting point for this entry.
Assume a function is integrable over the interval and is the th partial sum of the
Fourier Series of , so that
(1) | |||
(2) |
(3) |
(4) |
(5) |
(6) | |||
(7) | |||
(8) | |||
(9) |
(10) |
(11) |
(12) |
This result can be generalized for an -differentiable function satisfying
(13) |
(14) |
(15) |
Watson (1930) showed that
(16) |
(17) | |||
(18) | |||
(19) |
References
Finch, S. ``Favorite Mathematical Constants.'' http://www.mathsoft.com/asolve/constant/lbsg/lbsg.html
Hardy, G. H. ``Note on Lebesgue's Constants in the Theory of Fourier Series.'' J. London Math. Soc. 17, 4-13, 1942.
Kolmogorov, A. N. ``Zur Grössenordnung des Restgliedes Fourierscher reihen differenzierbarer Funktionen.''
Ann. Math. 36, 521-526, 1935.
Watson, G. N. ``The Constants of Landau and Lebesgue.'' Quart. J. Math. Oxford 1, 310-318, 1930.
Zygmund, A. G. Trigonometric Series, 2nd ed., Vols. 1-2. Cambridge, England: Cambridge University Press, 1959.
© 1996-9 Eric W. Weisstein