info prev up next book cdrom email home

Lévy Constant

Let $p_n/q_n$ be the $n$th Convergent of a Real Number $x$. Then almost all Real Numbers satisfy

\begin{displaymath}
L\equiv \lim_{n\to\infty} (q_n)^{1/n}=e^{\pi^2/(12\ln 2)}=3.27582291872\ldots.
\end{displaymath}

See also Khintchine's Constant, Khintchine-Lévy Constant


References

Le Lionnais, F. Les nombres remarquables. Paris: Hermann, p. 51, 1983.




© 1996-9 Eric W. Weisstein
1999-05-26