info prev up next book cdrom email home

Parabolic Segment

\begin{figure}\begin{center}\BoxedEPSF{ParabolicSegment.epsf}\end{center}\end{figure}

The Arc Length of the parabolic segment shown above is given by

\begin{displaymath}
s=\sqrt{4x^2+y^2}+{y^2\over 2x}\ln\left({2x+\sqrt{4x^2+y^2}\over y}\right).
\end{displaymath} (1)


The Area contained between the curves

$\displaystyle y$ $\textstyle =$ $\displaystyle x^2$ (2)
$\displaystyle y$ $\textstyle =$ $\displaystyle ax+b$ (3)

can be found by eliminating $y$,
\begin{displaymath}
x^2-ax-b=0,
\end{displaymath} (4)

so the points of intersection are
\begin{displaymath}
x_\pm ={\textstyle{1\over 2}}(a\pm\sqrt{a^2+4b}\,).
\end{displaymath} (5)

Therefore, for the Area to be Nonnegative, $a^2+4b>0$, and
$\displaystyle x_\pm$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(a^2\pm2a\sqrt{a^2+b^2}+a^2+4b)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(2a^2+4b\pm 2a\sqrt{a^2+4b}\,)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(a^2+2b\pm a\sqrt{a^2+4b}\,),$ (6)

so the Area is
$\displaystyle A$ $\textstyle =$ $\displaystyle \int_{x_-}^{x_+} [(ax+b)-x^2]\,dx$  
  $\textstyle =$ $\displaystyle \left[{{\textstyle{1\over 2}}ax^2+bx-{\textstyle{1\over 3}}x^3}\right]^{(a+\sqrt{a^2+4b}\,)/2}_{(a-\sqrt{a^2+4b}\,)/2}.$ (7)

Now,


$\displaystyle {x_+}^2-{x_-}^2$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\left[{(a^2+2a\sqrt{a^2+4b}+a^2+4b)-(a^2-2a\sqrt{a^2+4b}+a^2+4b)}\right]$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\left[{4a\sqrt{a^2+4b}\,}\right]= a\sqrt{a^2+4b}$ (8)
$\displaystyle {x_+}^3-{x_-}^3$ $\textstyle =$ $\displaystyle (x_+-x_-)({x_+}^2+x_-x_++{x_-}^2)$  
  $\textstyle =$ $\displaystyle \sqrt{a^2+4b}\left\{{{\textstyle{1\over 4}}(a^2+2a\sqrt{a^2+4b}+a...
...r 4}}[a^2-(a^2+4b)]+{\textstyle{1\over 4}}(a^2-2a\sqrt{a^2+4b}+a^2+4b)}\right\}$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\sqrt{a^2+4b}\, (4a^2+4b) = \sqrt{a^2+4b}\,(a^2+b).$ (9)

So
$\displaystyle A$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}a^2\sqrt{a^2+4b}+b\sqrt{a^2+4b}={\textstyle{1\over 3}}(a^2+b)\sqrt{a^2+4b}$  
  $\textstyle =$ $\displaystyle \sqrt{a^2+4b}\left[{({\textstyle{1\over 2}}-{\textstyle{1\over 3}}) a^2+b(1-{\textstyle{1\over 3}})}\right]$  
  $\textstyle =$ $\displaystyle ({\textstyle{1\over 6}}a^2+{\textstyle{2\over 3}}b)\sqrt{a^2+4b}$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 6}}(a^2+4b)\sqrt{a^2+4b}={\textstyle{1\over 6}} (a^2+4b)^{3/2}.$ (10)

We now wish to find the maximum Area of an inscribed Triangle. This Triangle will have two of its Vertices at the intersections, and Area
\begin{displaymath}
A_\Delta = {\textstyle{1\over 2}}(x_-y_*-x_*y_--x_+y_*+x_*y_++x_+y_--x_-y_+).
\end{displaymath} (11)

But $y_*={x_*}^2$, so


$\displaystyle A_\Delta$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(x_-{x_*}^2-x_*y_--x_+{x_*}^2+x_*y_*+x_+y_--x_-y_+)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}[-{x_*}^2(x_+-x_-)+x_*(y_+-y_-)+(x_+y_--x_-y_+)].$ (12)

The maximum Area will occur when
\begin{displaymath}
{\partial A_\Delta\over \partial x_*} = {\textstyle{1\over 2}}[-2(x_+-x_-)x_*+(y_+-y_-)]=0.
\end{displaymath} (13)

But
$\displaystyle x_+-x_-$ $\textstyle =$ $\displaystyle \sqrt{a^2+4b}$ (14)
$\displaystyle y_+-y_-$ $\textstyle =$ $\displaystyle a\sqrt{a^2+4b},$ (15)

so
\begin{displaymath}
x_*={1\over 2} {y_+-y_-\over x_+-x_-} = {\textstyle{1\over 2}}a
\end{displaymath} (16)

and


\begin{displaymath}
A_\Delta = {\textstyle{1\over 2}}[-({\textstyle{1\over 2}}a)^2(x_+-x_-)+({\textstyle{1\over 2}}a)(y_+-y_-)+(x_+y_--x_-y_+)].
\end{displaymath} (17)

Working on the third term


$\displaystyle x_+y_-$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(a+\sqrt{a^2+4b}\,)(a^2+2b-a\sqrt{a^2+4b}\,)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\left[{a^3+2ab-a^2\sqrt{a^2+4b}+a^2\sqrt{a^2+4b}+2b\sqrt{a^2+4b}-a(a^2+4b)}\right]$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}[-2ab+2b\sqrt{a^2+4b}\,]$ (18)
$\displaystyle x_-y_+$ $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}(a-\sqrt{a^2+4b}\,)(a^2+2b+a\sqrt{a^2+4b}\,)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}\left[{a^3+2ab+a^2\sqrt{a^2+4b}-a^2\sqrt{a^2+4b}-2b\sqrt{a^2+4b}-a(a^2+4b)}\right]$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 4}}[-2ab-2b\sqrt{a^2+4b}\,],$ (19)

so
\begin{displaymath}
x_+y_--x_-y_+={\textstyle{1\over 4}}(4b\sqrt{a^2+4b}) = b\sqrt{a^2+4b}
\end{displaymath} (20)

and


$\displaystyle A_\Delta$ $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}(-{\textstyle{1\over 4}}a^2\sqrt{a^2+4b}+{\textstyle{1\over 2}}a^2\sqrt{a^2+4b}+b\sqrt{a^2+b^2}\,)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 2}}\sqrt{a^2+4b} \left[{({\textstyle{1\over 2}...
...2+b}\right]= {\textstyle{1\over 2}}\sqrt{a^2+4b}\,({\textstyle{1\over 4}}a^2+b)$  
  $\textstyle =$ $\displaystyle {\textstyle{1\over 8}} \sqrt{a^2+4b}\,(a^2+4b) = {\textstyle{1\over 8}} (a^2+4b)^{3/2},$ (21)

which gives the result known to Archimedes in the third century BC that
\begin{displaymath}
{A\over A_\Delta} = {{\textstyle{1\over 6}}\over {\textstyle{1\over 8}}} = {4\over 3}\,.
\end{displaymath} (22)


The Area of the parabolic segment of height $h$ opening upward along the y-Axis is

\begin{displaymath}
A=2\int_0^h \sqrt{y}\,dy={\textstyle{1\over 3}} h^{3/2}.
\end{displaymath} (23)

The weighted mean of $y$ is
\begin{displaymath}
\left\langle{y}\right\rangle{}=2\int_0^h y\sqrt{y}\,dy=2\int_0^h y^{3/2}\,dy={\textstyle{4\over 5}}h^{5/2}.
\end{displaymath} (24)

The Centroid is then given by
\begin{displaymath}
\bar y={\left\langle{y}\right\rangle{}\over A}={\textstyle{3\over 5}}h.
\end{displaymath} (25)

See also Centroid (Geometric), Parabola, Segment


References

Beyer, W. H. (Ed.) CRC Standard Mathematical Tables, 28th ed. Boca Raton, FL: CRC Press, p. 125, 1987.



info prev up next book cdrom email home

© 1996-9 Eric W. Weisstein
1999-05-26