A curve which may pass through any region of 3-D space, as contrasted to a Plane Curve which must lie in
a single Plane. Von Staudt (1847) classified space curves geometrically by considering the curve
(1) |
(2) | |||
(3) | |||
(4) |
See also Curve, Cyclide, Fundamental Theorem of Space Curves, Helix, Plane Curve, Seifert's Spherical Spiral, Skew Conic, Space-Filling Function, Spherical Spiral, Surface, Viviani's Curve
References
do Carmo, M.; Fischer, G.; Pinkall, U.; and Reckziegel, H. ``Singularities of Space Curves.''
§3.1 in Mathematical Models from the Collections of Universities and Museums
(Ed. G. Fischer). Braunschweig, Germany: Vieweg, pp. 24-25, 1986.
Fine, H. B. ``On the Singularities of Curves of Double Curvature.'' Amer. J. Math. 8, 156-177, 1886.
Fischer, G. (Ed.). Plates 57-64 in Mathematische Modelle/Mathematical Models, Bildband/Photograph Volume.
Braunschweig, Germany: Vieweg, pp. 58-59, 1986.
Gray, A. ``Curves in '' and ``Curves in Space.'' §1.2 and Ch. 7 in
Modern Differential Geometry of Curves and Surfaces. Boca Raton, FL: CRC Press, pp. 4-6 and 123-151, 1993.
Griffiths, P. and Harris, J. Principles of Algebraic Geometry. New York: Wiley, 1978.
Saurel, P. ``On the Singularities of Tortuous Curves.'' Ann. Math. 7, 3-9, 1905.
Staudt, C. von. Geometrie der Lage. Nürnberg, Germany, 1847.
Wiener, C. ``Die Abhängigkeit der Rückkehrelemente der Projektion einer unebenen Curve von deren der Curve selbst.''
Z. Math. & Phys. 25, 95-97, 1880.
© 1996-9 Eric W. Weisstein